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Intisari

Indonesia merupakan wilayah yang rentan banjir, sehingga diperlukan deteksi dini
melalui prediksi ketinggian air sungai yang akurat dengan memanfaatkan metode
pemodelan yang cepat. Studi ini bertujuan untuk mengembangkan model prediksi
tinggi muka air (TMA) akurasi tinggi di beberapa pos pemantauan aliran sungai
dengan memanfaatkan sejumlah dataset peta spasial curah hujan dan informasi
debit keluaran bendungan sebagai variabel input dalam model deep learning
menggunakan kombinasi CNN dan LSTM. Model ini diuji dengan menggunakan
dua skenario, yaitu dengan dan tanpa operasi bendungan, dan performa prediksi
TMA tersebut dievaluasi di tiga lokasi pos (Katulampa, Kampung Kalapa, dan MT.
Haryono). Evaluasi awal hanya dengan menggunakan input spasial curah hujan
terhadap salah satu pos di MT. Haryono menunjukkan bahwa nilai korelasi sebesar
0.65, MAE sebesar 0.412, dan NSE sebesar 0.58. Setelah penambahan jumlah citra
curah hujan dan integrasi data debit berdasarkan skenario operasi bendungan,
terjadi peningkatan akurasi yang signifikan di seluruh pos tersebut, nilai korelasi
meningkat menjadi 0.88, nilai MAE menurun menjadi 0.137 m dan NSE meningkat
menjadi 0.85. Hasil ini mengonfirmasi bahwa integrasi informasi operasi
bendungan sebagai variabel input menghasilkan performa prediksi yang lebih baik
dibandingkan pendekatan yang hanya menggunakan data curah hujan, sesuai
konsep dasar hubungan antara hujan-aliran dan pengaruh kendali bendungan.

Kata kunci : prediksi tinggi muka air, deep learning, debit keluaran bendungan,
CNN, LSTM

Latar Belakang

Wilayah Indonesia merupakan wilayah rentan terhadap bencana banjir. Setiap tahun bencana
banjir terjadi di berbagai tempat di wilayah Indonesia. Menurut data yang dihimpun dalam
Data Informasi Bencana Indonesia (DIBI)-BNPB, terdapat lebih dari 49.128 kejadian
bencana hidrometeorologi pada periode tahun 2008 hingga 2025 dan lebih dari 35% (17.208)
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kejadian banjir yang menjadi salah satu bencana hidrometeorologi dengan jumlah tertinggi
(BNPB, 2025).

Deteksi dini banjir melalui prediksi ketinggian air sungai yang akurat sangat penting untuk
mendukung mitigasi yang cepat dan efektif (Alfieri et al., 2018; Perera et al., 2019). Berbagai
metode prediksi telah dikembangkan, dan dengan kemajuan teknologi, pemodelan kini
banyak memanfaatkan machine learning. Dalam prediksi tinggi muka air (TMA)
menggunakan deep learning, faktor operasi bendungan berperan besar terhadap akurasi
karena pengaturan aliran dapat menyebabkan fluktuasi debit dan TMA yang tidak selalu
sejalan dengan kondisi hidrometeorologis. Pelepasan air yang dinamis akibat faktor teknis
dan manajerial menciptakan pola aliran kompleks yang sulit diprediksi tanpa
mempertimbangkan variabel operasi bendungan, sehingga dapat menimbulkan deviasi
signifikan di wilayah hilir.

Deep learning telah banyak digunakan dalam masalah teknik dan sains, dan khususnya
pemodelan proses hidrologi nonlinier (Chen and Adams, 2006; Pradhan, Tingsanchali
and Shrestha, 2020; Shen and Lawson, 2021). Salah satu contoh model deep learning
yang banyak digunakan adalah artificial neural network (ANN) dimana model tersebut
meniru sistem kerja jaringan saraf biologis otak manusia dengan memetakan hubungan
nonlinier kompleks dan proses yang melekat di antara beberapa variabel yang
mempengaruhi melalui struktur modelnya (Jensen, Hardin and Yu, 2009). Kinerja dari
berbagai Teknik machine learning dan deep learning dievaluasi, termasuk Random Forest,
Support Vector Machine, dan LSTM, dalam memprediksi TMA dengan menggunakan data
historis hidrologi (Ayus, Natarajan and Gupta, 2023). Hasil studi menunjukkan bahwa
LSTM memberikan akurasi prediksi tertinggi dibandingkan metode lainnya, terutama dalam
menangkap pola temporal yang kompleks pada data muka air. Pendekatan peningkatan
model deep learning diusulkan untuk prediksi TMA sungai dengan mengintegrasikan
metode jaringan kompleks guna merefleksikan hubungan spasial dan temporal antar stasiun
pengamatan yang menunjukkan bahwa penggabungan struktur jaringan dalam arsitektur
model meningkatkan akurasi prediksi secara signifikan (Kim et al., 2022). Berbagai
algoritma machine learning dieksplorasi seperti Random Forest, XGBoost, dan Gradient
Boosting untuk meramalkan TMA di Sungai Muda, Malaysia (Adli Zakaria et al., 2023).
Pendekatan gabungan CNN-LSTM juga dilakukan untuk memprediksi TMA dan kualitas
air secara simultan dengan memanfaatkan fitur spasial dan temporal dari data hidrologi (Back
et al., 2020). Beberapa model deep learning diterapkan, termasuk LSTM dan GRU, untuk
memprediksi TMA Sungai Kien Giang yang memberikan hasil prediksi yang paling akurat
(Hieu et al., 2023).

Meskipun studi sebelumnya menggunakan deep learning untuk memprediksi TMA dengan
akurasi tinggi, namun umumnya belum mempertimbangkan pengaruh operasi bendungan.
Padahal, bendungan berperan penting dalam mengatur aliran melalui mekanisme buka-tutup
pintu air dan pelepasan yang dinamis, sehingga model tanpa variabel ini berpotensi bias,
terutama di wilayah hilir. Studi ini menerapkan model dengan memasukkan data operasional
bendungan, curah hujan yang terukur oleh ground station yang diproses menjadi peta isohiet,
serta data TMA di beberapa titik. Pendekatan ini memungkinkan prediksi yang lebih akurat
dengan mempertimbangkan pengaruh fisik dan operasional bendungan terhadap dinamika
sungai.
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Metodologi Studi
Data

Studi ini menggunakan Daerah Aliran Sungai (DAS) Ciliwung sebagai studi kasus untuk
penerapan dan pengujian algoritma deep learning dalam memprediksi tinggi muka air
(TMA) sungai. DAS ini dipilih karena memiliki data telemetri curah hujan dan TMA yang
relatif lengkap. Peta DAS dan distribusi pos curah hujan telemetri ditampilkan pada Gambar
1. Data yang digunakan terdiri dari dua jenis, yaitu TMA sungai dan curah hujan yang diukur
melalui pos duga air serta AWS telemetri dengan resolusi waktu per jam selama periode 1
Juni 2021 hingga 30 Juni 2024. Selain itu, data curah hujan harian dari pos manual juga
digunakan untuk memverifikasi kualitas data hujan telemetri.

Edg Pasar By Gefiuite Bb

® Pos hujan
[T DAS Ciliwung

106.400 - 106,600 106.800 107.600 107.200

Gambar 1. Daerah aliran sungai Ciliwung dan beberapa pos hujan telemetri di
sekitarnya

Pengujian data telemetri curah hujan dan TMA dilakukan dengan cara:

a. Errorteridenfikasi dari nilai yang sama dengan jumlah yang sangat banyak

b. Error teridenfikasi dari nilai yang sangat ekstrim. Batas maksimum intensitas curah
hujan ditentukan dengan merujuk pada studi Samsudin (2015), yang mencatat intensitas
24,61~48,87 mm/jam untuk periode ulang 2~100 tahun. Karena data penelitian ini
kurang dari 5 tahun, digunakan batas maksimum intensitas periode ulang 5 tahun, yaitu
30,57 mm/jam.

c. Nilai akumulasi harian dari curah hujan telemetri dibandingkan dengan data dari pos
hujan manual terdekat

Dari pengujian terhadap data telemetri curah hujan dan TMA tersebut, maka data yang
terindikasi error selanjutnya dikeluarkan dari dataset untuk melakukkan training terhadap
algoritma deep learning.

Metode Deep Learning untuk Prediksi TMA Sungai

Dalam kajian ini, kombinasi Convolutional Neural Network (CNN) dan Long Short-Term
Memory (LSTM) digunakan untuk memprediksi ketinggian air. Kedua algoritma ini dapat
menangkap fitur spasial dan temporal dari data sekuensial. CNN merupakan algoritma deep

learning yang paling umum dan telah banyak diterapkan pada bidang seperti pengenalan
citra, translasi, dan analisis ucapan (Alzubaidi et al., 2021). CNN dirancang untuk mengenali
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pola pada citra, dan pada studi ini digunakan dalam arsitektur CNN-LSTM dengan dua input
berbeda: data curah hujan berdimensi 251 x 141 dan input ketinggian air. Model CNN terdiri
dari tiga lapisan konvolusional, dua pooling, dan dua fu/ly connected, di mana hasil ekstraksi
fitur dari citra dan vektor digabungkan untuk menghasilkan prediksi ketinggian air. CNN
mengekstraksi pola gambar melalui lapisan konvolusional yang memproses data dalam
bentuk matriks multidimensi, dengan setiap neuron terhubung pada area kecil agar
komputasi efisien dan overfitting berkurang. Proses ekstraksi fitur diatur oleh parameter
ukuran filter, padding, dan stride yang menentukan area pemindaian, perlindungan tepi, serta
jarak pergerakan filter.
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Gambar 0. Arsitektur jaringan CNN dan LSTM untuk memprediksi ketinggian
air sungai yang diadopsi dari penelitian sebelumnya (Li et al., 2022b)
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dimana, OH adalah tinggi keluaran, IH adalah tinggi masukan, FH adalah tinggi filter, SH
adalah tinggi langkah, OW adalah lebar keluaran, IW adalah lebar masukan, PH adalah tinggi
dari padding, PW adalah lebar padding, FW adalah lebar filter, dan SW adalah lebar arah

langkah.

Secara umum, lapisan konvolusional memerlukan fungsi aktivasi untuk mengubah sinyal
dari linier menjadi non-linier. Fungsi rectified linear unit (ReLU) digunakan sebagai fungsi
aktivasi untuk meningkatkan kecepatan dan akurasi komputasi dibandingkan dengan fungsi
aktivasi lainnya (misalnya fungsi tangent sigmoid). Fungsi ReL.U mencegah masalah gradien
hilang dengan menurunkan gradien #raining secara eksponensial. Fungsi ReLU didefinisikan
dalam persamaan berikut:

f(x) = max(0,x) €)
di mana, f(x) adalah keluaran ReL.U dan x adalah sinyal masukan.

Lapisan max-pooling digunakan untuk mengekstraksi fitur invarian dengan tingkat
konvergensi yang efisien. Lapisan ini dapat mengurangi nilai-nilai non-maksimal dengan
melakukan non-linear downsampling yang dapat mengurangi sampling komputasi selama
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proses CNN. Flatten Layer digunakan untuk meratakan output dari lapisan CNN menjadi
vektor satu dimensi. Formula matematik untuk tahap ini adalah sebagai berikut.

Flatten(x) = reshape(X, [—1]) C))

Setelah itu pengolahan data dilanjutkan pada algoritma LSTM (DiPietro and Hager,
2020). LSTM memiliki beberapa gate (gerbang) yang mengendalikan aliran informasi.

a. Forget Gate: f(x) = o(Ws. [he—y1, x:] + by) 5)
b. Input Gate: i, =oc(W;.[he_q, x¢] + b;) 6)
c. Candidate Memory Cell: Co=fi*Croq+i,*C; (7
d. Output Gate: o = ao(W,.[hi_q1,x:] + by) )
e. Cell State Update: Co=fi*Crq+i,*C; )
f. Hidden State Update: h; = o, * tanh(C,) (10)

dimana o adalah fungsi aktivasi sigmoid, W adalah bobot, dan b adalah bias yang dipelajari.

Sebagai tahap akhir dari kombinasi CNN-LSTM ini, terdapat dense layer yang berfungsi
untuk menghasilkan output prediksi TMA dengan formula sebagai berikut:

y=W.h+b (11)

Dimana W adalah bobot yang dipelajari, b adalah bias, /# adalah mput dari LSTM, dan y
adalah output (prediksi).

Untuk meningkatkan akurasi, dilakukan berbagai uji parameter pada model CNN-LSTM.
Percobaan meliputi variasi ukuran citra (128, 64, 32), jumlah plot curah hujan per sampel,
nilai normalisasi (255-150), batch size (32—128), dan epoch (30—150). Plot curah hujan
dibuat dengan latar hitam dan intensitas hujan semakin tinggi ditampilkan semakin putih.

CNN
(Peta 2D distribusi hujan

S

t-n t-3 t-2 t-1 t- t+4 t+n
Tinggi muka air historis Tinggi muka air prediksi

Gambar 3. Konsep prediksi TMA sungai. Input didasarkan pada data TMA
historis dan peta 2 dimensi dari distribusi hujan untuk prediksi TMA pada jam
ke 1, 2, hingga n.

Seperti ditunjukkan pada Gambar 3, studi ini menguji pengaruh curah hujan terhadap
kenaikan TMA menggunakan peta 2D distribusi hujan dan data historis. Pengujian dilakukan
dengan jeda waktu 0~7 jam untuk menentukan selang waktu prediksi paling akurat. Hasilnya
digunakan sebagai dasar penyusunan model prediksi TMA berdasarkan selisih waktu antara
hujan dan respons muka air sungai (lihat persamaan 12).

At =ty — ty2q (12)

dimana At adalah selisih dari dua langkah waktu, twp adalah langkah waktu prediksi TMA,
dan trd adalah langkah waktu peta spasial curah hujan.
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Studi ini menggunakan metode interpolasi Inverse Distance Weighting (IDW) pada data
curah hujan telemetri sebanyak 26.280 waktu sebagai dataset pelatihan deep learning.
Metode interpolasi IDW digunakan karena kemudahan dan kecepatan pengolahannya
(Boke and Boke, 2017; Jiang et al., 2025).

Metodologi pada Gambar 4 mengintegrasikan data real-time untuk memprediksi TMA
Sungai Ciliwung dengan mempertimbangkan pengaruh debit keluar Bendungan Ciawi dan
Sukamabhi. Input berupa data isohiet, TMA inlet, dan debit keluaran digunakan untuk
memprediksi TMA di Katulampa, Kampung Kalapa, dan MT. Haryono. Hubungan
nonlinier antara TMA dan debit menunjukkan pengaruh operasi bendungan, sehingga model
diharapkan merepresentasikan dinamika sungai lebih akurat dalam mendukung peringatan
dini banyjir.
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Gambar 4. Deep Learning untuk Prediksi TMA dengan Memasukkan Faktor
debit aliran dari 2 Bendungan Kering (dry dam)

Gambar 4 menyajikan grafik hubungan TMA dan debit keluar bendungan Sukamahi (a),
grafik hubungan TMA dan debit keluar bendungan Ciawi (b), struktur aliran untuk masing-
masing bendungan di Ciliwung (c), dan konsep input dan output pada deep learning dengan
memasukkan faktor bendungan (d). Vektor yang terhubung penuh dalam algoritma CNN
memiliki loss function untuk menghitung kesalahan antara nilai yang diamati dan yang
disimulasikan dengan membuat vektorisasi sinyal input. MSE digunakan sebagai fungsi loss
dalam penelitian yang digunakan untuk menghitung error antara nilai yang disimulasikan
dan yang diamati. Persamaan MSE adalah sebagai berikut:

MSE = LTI, (¥ — 0,)? (13)

dimana, Y; adalah hasil simulasinya, O; adalah data yang diamati, dan N adalah jumlah
kumpulan data.
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Keakuratan prediksi ketinggian air juga dievaluasi menggunakan koefisien determinasi (R?),
efisiensi Nash-Sutcliffe (NSE) dan mean square ervor (MSE). Persamaan R* dan NSE
didefinisikan sebagai berikut:

2 _ [ ZR,0i-0)Pi-P)
R® = ¥, (0;-07)2(P;—P;)?2 (14)
_ _ Z?:l(oi_Pi)z
NSE =1 S 0o (15)

dimana » adalah jumlah dataset yang memiliki TMA (m), P; menunjukkan hasil prediksi, 0,
adalah rata-rata dari data yang diamati dan O; mewakili data yang diamati.

Hasil Studi dan Pembahasan

Gambar 5 menampilkan isohiet curah hujan per jam dari pos telemetri di hulu DAS
Ciliwung. Sebanyak 26.280 plot periode 2022-2024 menunjukkan sebaran spasial intensitas
hujan. Data ini penting untuk pelatihan model karena merepresentasikan pola hujan secara
spasial, membantu model deep learning mengenali hubungan kompleks antara hujan dan
TMA di hilir.

2022-01-1020 00 00 2022-01-05 18 00 00  2022-01-1117 00 00  2022-01-12 17_00_00

Gambar 5. Isohiet data curah hujan dari pos telemetri

Gambar 6 menunjukkan hasil prediksi TMA menggunakan model deep learning dengan
berbagai lead time atau waktu prakiraan, yaitu 1 hingga 6 jam ke depan. Grafik di bagian atas
menggambarkan perbandingan antara data observasi (garis hitam tebal) dan hasil prediksi
model pada masing-masing waktu prediksi (1~6 jam), yang ditampilkan dengan garis warna
berbeda. Secara umum, model mampu mengikuti tren fluktuasi TMA, meskipun terdapat
deviasi kecil pada beberapa puncak nilai.

Sementara itu, enam scatter plot di bagian bawah memperlihatkan hubungan antara nilai
prediksi dan nilai observasi untuk masing-masing lead time. Nilai koefisien korelasi Pearson
(rr) berkisar antara 0.55 hingga 0.67, dengan akurasi tertinggi pada prediksi 1 jam ke depan
(rr=0.67) dan menurun secara bertahap seiring bertambahnya lead time, misalnya menjadi
rr=0.55 pada 2 dan 3 jam, dan 7 = 0.56 pada 6 jam. Hasil ini menunjukkan bahwa model
memiliki kemampuan prediksi yang cukup baik dalam jangka pendek, namun akurasinya
cenderung menurun seiring waktu, yang merupakan karakteristik umum dalam prediksi
hidrologi berbasis data.

Gambar 7 menunjukkan hasil prediksi TMA di MT. Haryono setelah model memasukkan
faktor debit keluar dari bendungan sebagai salah satu variabel input. Grafik utama (TMA
prediction) memperlihatkan bahwa prediksi model (garis merah) secara umum mampu
mengikuti pola fluktuasi nilai observasi (garis hitam), termasuk dalam menangkap lonjakan
TMA pada saat-saat tertentu. Hal ini menunjukkan bahwa integrasi data debit keluar dari
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bendungan memberikan kontribusi positif dalam meningkatkan sensitivitas model terhadap
perubahan mendadak akibat pelepasan air.

5
4
3 = f 7 k‘}f\&”’/
| o Y s
2 = ¥ ,-ii_\ N { W W V
— Obs 3 hours frest — B hours frest
1 ~——— 1hourfrcst 4 hours frest
—— 2 hours frest —— 5 hours frest
0
02-24 15:36 02-26 15:36 02-28 15:36 03-0115:36 03-03 15:36 03-0515:36 03-07 15:36 03-0915:36
1 hour frest 2 hours frest 3 hours frest
4 4 4
3. Cor=0.67 Mm—% g, Cor=055 w 3 g, Cor=055 -
= °wne " H om H o
w2 w2 w2
I I ©
g1 g1 31
0 0.5 1 1.5 2 25 3 3.5 o 05 1 .5 2 25 3 as 0 0.5 1 15 2 25 3 35
PREDIKS| PREDIKSI PREDIKSI
A hours frest 5 hours frest 6 hours frest
oae _4 &
7' Cor=0.62 P 7' Cor=0.62 % Cor=0.56 o o ol o
g3 . e <3 et g B caed o
= =0 4 2 g
&2 ﬁ 2 i 2
I
LRl 81 a1
[} 0s 1 15 2 25 35 o [ 1.5 2 25 3.5 o 05 1 1.5 2 25 3 as
PREDIKSI PREDIKSI PREDIKSI

Gambar 6. Prediksi TMA di pos MT Haryono dengan menggunakan ukuran
pixel 64 dan ukuran sampel 20
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Gambar 7. Prediksi TMA di pos MT Haryono dengan menggunakan ukuran pixel
64 dan ukuran sampel 20 setelah model memasukkan faktor debit keluar dari
bendungan

Grafik prediction errors di bagian kiri bawah memperlihatkan selisih antara nilai observasi
dan prediksi terhadap waktu, dengan sebagian besar error berada dalam rentang +0.3 meter,
menandakan bahwa model cukup stabil dalam menjaga akurasi selama periode pengujian.
Sementara itu, histogram distribution of errors menunjukkan distribusi galat yang bersifat
simetris dan cenderung terpusat di sekitar nol, yang menandakan tidak adanya bias sistematis
dalam hasil prediksi. Secara keseluruhan, hasil ini mendukung hipotesis bahwa
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mempertimbangkan faktor operasi bendungan dapat meningkatkan performa model prediksi
TMA.

Gambar 8 dan 9 menampilkan hasil prediksi TMA di Pos Katulampa dan Kampung Kalapa
setelah memasukkan variabel debit keluar bendungan ke dalam model. Di Katulampa, model
mampu menangkap tren umum observasi meski kurang akurat pada puncak TMA; sebagian
besar galat berada di bawah +0.2 m dengan distribusi simetris di sekitar 0~0.1 m,
menunjukkan stabilitas dan minim bias. Sementara itu, di Kampung Kalapa, garis prediksi
(merah) berhasil mengikuti fluktuasi nilai aktual (hitam), terutama saat terjadi lonjakan TMA
tajam, menandakan bahwa penambahan variabel debit bendungan meningkatkan
kemampuan model mengenali dinamika aliran mendadak akibat pelepasan air.
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Gambar 8. Prediksi TMA di pos Katulampa setelah model memasukkan faktor
debit keluar dari bendungan

Grafik prediction errors menunjukkan sebagian besar kesalahan berada pada rentang kecil
(-0.1 hingga 0.1 m), dengan beberapa outlier saat puncak aliran. Ini menandakan model
masih sulit menangkap lonjakan ekstrem, meski akurasinya membaik. Histogram kesalahan
yang terpusat di sekitar nol menunjukkan tidak adanya bias signifikan. Secara keseluruhan,
penambahan data debit bendungan meningkatkan akurasi prediksi TMA di hilir seperti di
Kampung Kalapa.

Tabel 1 dan 2 menunjukkan perbandingan hasil uji akurasi model prediksi TMA di tiga pos
pengamatan (Katulampa, Kampung Kalapa, dan MT. Haryono) sebelum dan sesudah
penambahan jumlah image curah hujan serta variabel debit keluaran dari bendungan. Pada
Tabel 1 (sebelum penambahan variabel), nilai korelasi (CC), Mean Absolute Error (MAE),
dan Nash-Sutcliffe Efficiency (NSE) menunjukkan bahwa akurasi model bervariasi antar
lokasi. Pos Kampung Kalapa memiliki performa paling baik (CC=0.82 dan NSE=0.71)
dengan kesalahan prediksi rata-rata (MAE) paling kecil, yaitu 0.069 m. Sebaliknya, Pos MT.
Haryono menunjukkan akurasi terendah, terutama dari sist MAE yang sangat tinggi (0.412
m), yang mengindikasikan adanya deviasi besar antara prediksi dan data aktual.
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Gambar 9. Prediksi TMA di pos Kp. Kalapa setelah model memasukkan
faktor debit keluar dari bendungan

Tabel 1. Prediksi TMA sebelum penambahan jumlah image curah hujan dan faktor debit

keluaran bendungan
Pos TMA Uji Akurasi
CC MAE NSE
Katulampa 0.58 0.11 0.68
Kp. Kalapa 0.82 0.069 0.71
MT. Haryono 0.65 0412 0.58
Tabel 2. Prediksi TMA setelah penambahan jumlah image curah hujan dan faktor debit
keluaran bendungan
Pos TMA Uji Akurasi
CC MAE NSE
Katulampa 0.83 0.062 0.75
Kp. Kalapa 0.82 0.020 0.81
MT. Haryono 0.88 0.137 0.85

Terlihat pada Tabel 1 dan 2, akurasi prediksi TMA yang ditunjukkan MAE di Kp. Kalapa
selalu lebih tinggi dibandingkan Katulampa dan MT. Haryono dapat dijelaskan dari posisi
geografis serta relevansi input model terhadap kondisi hidrologis. Kp. Kalapa berada di
tengah aliran, sehingga pola TMA di titik ini merupakan hasil integrasi dari hulu (Katulampa)
dan pengaruh bendungan Ciawi serta Sukamahi. Input berupa curah hujan spasial, TMA
inlet, dan debit outlet bendungan lebih sesuai dengan kondisi di Kp. Kalapa, sehingga model
CNN-LSTM mampu menangkap pola spasial-temporal dengan lebih baik. Sebaliknya,
Katulampa lebih dipengaruhi oleh curah hujan lokal di hulu yang variabilitasnya tinggi,
sementara MT. Haryono di hilir menghadapi kompleksitas tambahan seperti kontribusi anak
sungai dan limpasan perkotaan.

Selain itu, kualitas data dan tingkat noise juga berperan. Data di Kp. Kalapa cenderung lebih
konsisten karena aliran sudah tersaring oleh bendungan, sehingga pola TMA lebih stabil dan
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mudah diprediksi. Di Katulampa, curah hujan ekstrem atau variabilitas kecil dapat
menurunkan akurasi, sedangkan di MT. Haryono faktor antropogenik seperti urbanisasi dan
sistem drainase kota menambah ketidakpastian.

Untuk skenario jumlah data 17,520 image (sebelum penambahan), kombinasi
hyperparameter yang optimal cenderung menggunakan ukuran citra 64, normalisasi ke 255,
batch size 64, dan epoch sekitar 100. Ukuran citra 64 menjaga keseimbangan antara detail
spasial dan efisiensi komputasi, sementara normalisasi penuh (0-255) membantu stabilitas
training. Batch size 64 cukup untuk menjaga generalisasi tanpa terlalu membebani memori,
dan epoch 100 memberi waktu cukup bagi model CNN-LSTM untuk belajar pola spasial-
temporal tanpa overfitting.

Sedangkan setelah penambahan image curah hujan menjadi 26,280, hasil lebih baik karena
jumlah data yang lebih besar meningkatkan kemampuan model dalam mengenali variasi
pola hujan dan respon hidrologis. Pada skenario ini, kombinasi optimal adalah ukuran citra
128, normalisasi ke 200, batch size 128, dan epoch 150. Ukuran citra lebih besar
memungkinkan model memanfaatkan detail spasial tambahan, batch size 128 lebih stabil
dengan data besar, dan epoch 150 memberi kesempatan model untuk konvergen dengan
baik. Semakin banyak data, model CNN-LSTM dapat menangkap kompleksitas sistem
hidrologi dengan lebih akurat, sehingga prediksi TMA menjadi lebih presisi. Di Katulampa,
CC naik dari 0.58 ke 0.83, MAE turun ke 0.062 m, dan NSE ke 0.75; di MT. Haryono, NSE
naik ke 0.85. Kinerja terbaik diperoleh di Kampung Kalapa (NSE 0.81; MAE 0.020 m),
menunjukkan efektivitas kombinasi data hujan spasial dan debit bendungan. Selisih prediksi-
observasi masih wajar, dipengaruhi faktor lapangan seperti pengaturan pintu air atau
perubahan morfologi sungai, sehingga integrasi hasil model dengan pengetahuan lapangan
tetap penting. Jumlah data spasial yang lebih besar berkontribusi pada peningkatan performa
model, karena memperkaya representasi pola curah hujan dan aliran sungai yang dipelajari.

Hasil simulasi penerapan CNN-LSTM pada prediksi tinggi muka air (TMA) di DAS
Ciliwung menunjukkan konsistensi dengan hasil penelitian sebelumnya, di mana
peningkatan jumlah data dan resolusi spasial berkontribusi terhadap akurasi model yang lebih
tinggi. Dua studi sebelumnya (Deng, Chen and Huang, 2022; Li et al., 2022a) menegaskan
bahwa performa CNN-LSTM meningkat seiring bertambahnya data curah hujan dan debit
serta sangat bergantung pada pemilihan hyperparameter seperti batch size dan epoch, sejalan
dengan hasil tuning yang dilakukan dalam penelitian ini. Penelitian lain (Oddo et al., 2024)
juga melaporkan bahwa resolusi citra yang lebih detail mampu memperbaiki kualitas
prediksi, mendukung keputusan penggunaan citra berukuran 128 pada skenario dengan
jumlah data yang lebih besar.

Keterbatasan penelitian ini terletak pada variabel yang digunakan, yaitu curah hujan, debit,
dan operasi bendungan. Faktor lain seperti tata guna lahan, sedimentasi, dan kondisi
infrastruktur belum dimasukkan. Selain itu, penelitian ini belum mencakup integrasi model
dengan sistem peringatan dini atau pengambilan keputusan operasional di lapangan.
Penelitian selanjutnya perlu difokuskan pada pengayaan data dan pengembangan model.
Pengumpulan data yang lebih panjang dan beragam dari pengukuran, satelit, atau Internet of
Thing (IoT) akan meningkatkan akurasi. Penambahan variabel seperti kelembapan tanah,
karakteristik DAS, dan morfologi sungai membantu menangkap dinamika hidrologi yang
lebih kompleks. Dari sisi metode, penerapan model deep learning lanjutan seperti LSTM
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dengan attention atau physics-informed machine learning berpotensi meningkatkan kinerja.
Validasi di lokasi lain penting untuk menguji generalisasi, sementara integrasi ke sistem
peringatan dini berbasis dashboard dapat menjadikan model lebih aplikatif bagi pengelolaan
bendungan.

Kesimpulan dan Saran
Kesimpulan

Penelitian ini menunjukkan bahwa performa awal model prediksi TMA berbeda-beda di
setiap pos pengamatan. Sebelum penambahan data pendukung, Pos Kampung Kalapa sudah
menunjukkan performa yang relatif baik dengan nilai korelasi (CC) sebesar 0.82 dan nilai
NSE sebesar 0.71. Sebaliknya, Pos MT. Haryono memiliki akurasi yang kurang memadai,
ditunjukkan oleh nilai MAE yang cukup tinggi (0.412 m). Hal ini mengindikasikan bahwa
prediksi di beberapa lokasi masih rentan terhadap error dan belum cukup andal untuk
kebutuhan operasional. Setelah dilakukan penambahan jumlah citra curah hujan dan
dimasukkannya faktor debit keluaran bendungan sebagai variabel tambahan, model
menunjukkan peningkatan performa yang signifikan di seluruh pos. Peningkatan paling
mencolok terjadi di Pos Katulampa dan MT. Haryono, di mana nilai korelasi dan NSE
meningkat tajam serta nilai MAE menurun drastis. Di Kampung Kalapa, peningkatan
akurasi juga terlihat, dengan MAE turun hingga hanya 0.020 m dan nilai NSE naik ke 0.81,
menjadikan pos ini sebagai titik dengan prediksi paling akurat.

Akurasi model pada ruas tengah (Kp. Kalapa) tetap tinggi baik sebelum maupun setelah
penambahan jumlah citra hujan dan debit pelepasan bendungan karena lokasi ini secara
hidrologis sudah merepresentasikan integrasi aliran dari hulu dan pengaruh bendungan. Pola
TMA di Kp. Kalapa relatif stabil dan konsisten, sehingga bahkan dengan jumlah data yang
lebih sedikit, model CNN-LSTM sudah mampu menangkap karakteristik utama yang
memengaruhi fluktuasi muka air di titik tersebut. Penambahan jumlah citra hujan dan debit
pelepasan bendungan memperkaya informasi spasial-temporal, tetapi dampaknya lebih
signifikan pada titik hulu (Katulampa) dan hilir (MT. Haryono) yang memiliki variabilitas
lebih kompleks. Di Kp. Kalapa, pola aliran yang sudah terfilter membuat tambahan data tidak
banyak mengubah performa, sehingga akurasi tetap sama baiknya. Dengan kata lain, ruas
tengah memiliki kondisi hidrologis yang lebih representatif dan mudah diprediksi, sehingga
model mencapai akurasi optimal bahkan sebelum data tambahan dimasukkan.

Penerapan deep learning dengan arsitektur CNN-LSTM dalam prediksi tinggi muka air
(TMA) menunjukkan sejumlah keunggulan yang signifikan. Model ini mampu menangkap
pola spasial-temporal secara bersamaan, sehingga dapat memanfaatkan data citra curah hujan
sekaligus dinamika aliran sungai. Keunggulan lain adalah fleksibilitas dalam mengolah data
besar, sehingga semakin banyak citra hujan dan variabel hidrologis yang dimasukkan,
semakin baik kemampuan model dalam mengenali kompleksitas sistem.

Namun, terdapat pula kelemahan yang perlu diperhatikan untuk riset lanjutan. Model ini
sangat bergantung pada kualitas dan kelengkapan data; noise atau ketidakakuratan data
hidrologis dapat menurunkan performa. Selain itu, interpretabilitas model juga terbatas,
sehingga sulit menjelaskan secara detail hubungan sebab-akibat antara curah hujan, debit
bendungan, dan TMA. Oleh karena itu, riset lanjutan dapat diarahkan pada pengembangan
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metode explainable AI, optimasi hyperparameter yang lebih adaptif, serta integrasi dengan
model hidrologi fisik untuk meningkatkan akurasi sekaligus transparansi hasil prediksi.

Saran

Pengembangan model prediksi TMA disarankan menggunakan data lebih lengkap, terutama
debit keluaran bendungan dan citra hujan resolusi tinggi, yang terbukti meningkatkan akurasi
di wilayah rawan banjir seperti Kampung Kalapa. Evaluasi perlu dilakukan pada pos
berakurasi rendah seperti MT. Haryono untuk menelusuri sumber kesalahan. Peningkatan
resolusi data, pengayaan jangka panjang, serta penambahan variabel DAS dan morfologi
sungai akan memperbaiki kinerja model. Uji di lokasi lain dan integrasi ke dashboard
operasional akan memperluas penerapan dan manfaatnya.
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