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Intisari 

Indonesia merupakan wilayah yang rentan banjir, sehingga diperlukan deteksi dini 

melalui prediksi ketinggian air sungai yang akurat dengan memanfaatkan metode 

pemodelan yang cepat. Studi ini bertujuan untuk mengembangkan model prediksi 

tinggi muka air (TMA) akurasi tinggi di beberapa pos pemantauan aliran sungai 

dengan memanfaatkan sejumlah dataset peta spasial curah hujan dan informasi 

debit keluaran bendungan sebagai variabel input dalam model deep learning 

menggunakan kombinasi CNN dan LSTM. Model ini diuji dengan menggunakan 

dua skenario, yaitu dengan dan tanpa operasi bendungan, dan performa prediksi 

TMA tersebut dievaluasi di tiga lokasi pos (Katulampa, Kampung Kalapa, dan MT. 

Haryono). Evaluasi awal hanya dengan menggunakan input spasial curah hujan 

terhadap salah satu pos di MT. Haryono menunjukkan bahwa nilai korelasi sebesar 

0.65, MAE sebesar 0.412, dan NSE sebesar 0.58. Setelah penambahan jumlah citra 

curah hujan dan integrasi data debit berdasarkan skenario operasi bendungan, 

terjadi peningkatan akurasi yang signifikan di seluruh pos tersebut, nilai korelasi 

meningkat menjadi 0.88, nilai MAE menurun menjadi 0.137 m dan NSE meningkat 

menjadi 0.85. Hasil ini mengonfirmasi bahwa integrasi informasi operasi 

bendungan sebagai variabel input menghasilkan performa prediksi yang lebih baik 

dibandingkan pendekatan yang hanya menggunakan data curah hujan, sesuai 

konsep dasar hubungan antara hujan-aliran dan pengaruh kendali bendungan. 

Kata kunci :  prediksi tinggi muka air, deep learning, debit keluaran bendungan, 

CNN, LSTM 

Latar Belakang 

Wilayah Indonesia merupakan wilayah rentan terhadap bencana banjir. Setiap tahun bencana 

banjir terjadi di berbagai tempat di wilayah Indonesia. Menurut data yang dihimpun dalam 

Data Informasi Bencana Indonesia (DIBI)-BNPB, terdapat lebih dari  49.128 kejadian 

bencana hidrometeorologi pada periode tahun 2008 hingga 2025 dan lebih dari 35% (17.208) 
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kejadian banjir yang menjadi salah satu bencana hidrometeorologi dengan jumlah tertinggi 

(BNPB, 2025).  

Deteksi dini banjir melalui prediksi ketinggian air sungai yang akurat sangat penting untuk 

mendukung mitigasi yang cepat dan efektif (Alfieri et al., 2018; Perera et al., 2019). Berbagai 

metode prediksi telah dikembangkan, dan dengan kemajuan teknologi, pemodelan kini 

banyak memanfaatkan machine learning. Dalam prediksi tinggi muka air (TMA) 

menggunakan deep learning, faktor operasi bendungan berperan besar terhadap akurasi 

karena pengaturan aliran dapat menyebabkan fluktuasi debit dan TMA yang tidak selalu 

sejalan dengan kondisi hidrometeorologis. Pelepasan air yang dinamis akibat faktor teknis 

dan manajerial menciptakan pola aliran kompleks yang sulit diprediksi tanpa 

mempertimbangkan variabel operasi bendungan, sehingga dapat menimbulkan deviasi 

signifikan di wilayah hilir. 

Deep learning telah banyak digunakan dalam masalah teknik dan sains, dan khususnya 

pemodelan proses hidrologi nonlinier (Chen and Adams, 2006; Pradhan, Tingsanchali 

and Shrestha, 2020; Shen and Lawson, 2021). Salah satu contoh model deep learning 

yang banyak digunakan adalah artificial neural network (ANN) dimana model tersebut 

meniru sistem kerja jaringan saraf biologis otak manusia dengan memetakan hubungan 

nonlinier kompleks dan proses yang melekat di antara beberapa variabel yang 

mempengaruhi melalui struktur modelnya (Jensen, Hardin and Yu, 2009). Kinerja dari 

berbagai Teknik machine learning dan deep learning dievaluasi, termasuk Random Forest, 

Support Vector Machine, dan LSTM, dalam memprediksi TMA dengan menggunakan data 

historis hidrologi (Ayus, Natarajan and Gupta, 2023). Hasil studi menunjukkan bahwa 

LSTM memberikan akurasi prediksi tertinggi dibandingkan metode lainnya, terutama dalam 

menangkap pola temporal yang kompleks pada data muka air. Pendekatan peningkatan 

model deep learning diusulkan untuk prediksi TMA sungai dengan mengintegrasikan 

metode jaringan kompleks guna merefleksikan hubungan spasial dan temporal antar stasiun 

pengamatan yang menunjukkan bahwa penggabungan struktur jaringan dalam arsitektur 

model meningkatkan akurasi prediksi secara signifikan (Kim et al., 2022). Berbagai 

algoritma machine learning dieksplorasi seperti Random Forest, XGBoost, dan Gradient 

Boosting untuk meramalkan TMA di Sungai Muda, Malaysia (Adli Zakaria et al., 2023). 

Pendekatan gabungan CNN-LSTM juga dilakukan untuk memprediksi TMA dan kualitas 

air secara simultan dengan memanfaatkan fitur spasial dan temporal dari data hidrologi (Baek 

et al., 2020). Beberapa model deep learning diterapkan, termasuk LSTM dan GRU, untuk 

memprediksi TMA Sungai Kien Giang yang memberikan hasil prediksi yang paling akurat 

(Hieu et al., 2023). 

Meskipun studi sebelumnya menggunakan deep learning untuk memprediksi TMA dengan 

akurasi tinggi, namun umumnya belum mempertimbangkan pengaruh operasi bendungan. 

Padahal, bendungan berperan penting dalam mengatur aliran melalui mekanisme buka-tutup 

pintu air dan pelepasan yang dinamis, sehingga model tanpa variabel ini berpotensi bias, 

terutama di wilayah hilir. Studi ini menerapkan model dengan memasukkan data operasional 

bendungan, curah hujan yang terukur oleh ground station yang diproses menjadi peta isohiet, 

serta data TMA di beberapa titik. Pendekatan ini memungkinkan prediksi yang lebih akurat 

dengan mempertimbangkan pengaruh fisik dan operasional bendungan terhadap dinamika 

sungai. 
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Metodologi Studi 

Data  

Studi ini menggunakan Daerah Aliran Sungai (DAS) Ciliwung sebagai studi kasus untuk 

penerapan dan pengujian algoritma deep learning dalam memprediksi tinggi muka air 

(TMA) sungai. DAS ini dipilih karena memiliki data telemetri curah hujan dan TMA yang 

relatif lengkap. Peta DAS dan distribusi pos curah hujan telemetri ditampilkan pada Gambar 

1. Data yang digunakan terdiri dari dua jenis, yaitu TMA sungai dan curah hujan yang diukur 

melalui pos duga air serta AWS telemetri dengan resolusi waktu per jam selama periode 1 

Juni 2021 hingga 30 Juni 2024. Selain itu, data curah hujan harian dari pos manual juga 

digunakan untuk memverifikasi kualitas data hujan telemetri. 

 
Gambar 1. Daerah aliran sungai Ciliwung dan beberapa pos hujan telemetri di 

sekitarnya 

Pengujian data telemetri curah hujan dan TMA dilakukan dengan cara: 

a. Error teridenfikasi dari nilai yang sama dengan jumlah yang sangat banyak 

b. Error teridenfikasi dari nilai yang sangat ekstrim. Batas maksimum intensitas curah 

hujan ditentukan dengan merujuk pada studi Samsudin (2015), yang mencatat intensitas 

24,61~48,87 mm/jam untuk periode ulang 2~100 tahun. Karena data penelitian ini 

kurang dari 5 tahun, digunakan batas maksimum intensitas periode ulang 5 tahun, yaitu 

30,57 mm/jam. 

c. Nilai akumulasi harian dari curah hujan telemetri dibandingkan dengan data dari pos 

hujan manual terdekat 

Dari pengujian terhadap data telemetri curah hujan dan TMA tersebut, maka data yang 

terindikasi error selanjutnya dikeluarkan dari dataset untuk melakukkan training terhadap 

algoritma deep learning. 

Metode Deep Learning untuk Prediksi TMA Sungai 

Dalam kajian ini, kombinasi Convolutional Neural Network (CNN) dan Long Short-Term 

Memory (LSTM) digunakan untuk memprediksi ketinggian air. Kedua algoritma ini dapat 

menangkap fitur spasial dan temporal dari data sekuensial. CNN merupakan algoritma deep 

learning yang paling umum dan telah banyak diterapkan pada bidang seperti pengenalan 

citra, translasi, dan analisis ucapan (Alzubaidi et al., 2021). CNN dirancang untuk mengenali 
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pola pada citra, dan pada studi ini digunakan dalam arsitektur CNN-LSTM dengan dua input 

berbeda: data curah hujan berdimensi 251 × 141 dan input ketinggian air. Model CNN terdiri 

dari tiga lapisan konvolusional, dua pooling, dan dua fully connected, di mana hasil ekstraksi 

fitur dari citra dan vektor digabungkan untuk menghasilkan prediksi ketinggian air. CNN 

mengekstraksi pola gambar melalui lapisan konvolusional yang memproses data dalam 

bentuk matriks multidimensi, dengan setiap neuron terhubung pada area kecil agar 

komputasi efisien dan overfitting berkurang. Proses ekstraksi fitur diatur oleh parameter 

ukuran filter, padding, dan stride yang menentukan area pemindaian, perlindungan tepi, serta 

jarak pergerakan filter. 

 
Gambar 0. Arsitektur jaringan CNN dan LSTM untuk memprediksi ketinggian 

air sungai yang diadopsi dari penelitian sebelumnya (Li et al., 2022b) 

𝑂𝐻 =
𝐼𝐻 + 2𝑃𝐻 − 𝐹𝐻

𝑆𝐻
+ 1 (1) 

𝑂𝑊 =
𝐼𝑊 + 2𝑃𝑊 − 𝐹𝑊

𝑆𝑊
+ 1 (2) 

dimana, OH adalah tinggi keluaran, IH adalah tinggi masukan, FH adalah tinggi filter, SH 

adalah tinggi langkah, OW adalah lebar keluaran, IW adalah lebar masukan, PH adalah tinggi 

dari padding, PW adalah lebar padding, FW adalah lebar filter, dan SW adalah lebar arah 

langkah. 

Secara umum, lapisan konvolusional memerlukan fungsi aktivasi untuk mengubah sinyal 

dari linier menjadi non-linier. Fungsi rectified linear unit (ReLU) digunakan sebagai fungsi 

aktivasi untuk meningkatkan kecepatan dan akurasi komputasi dibandingkan dengan fungsi 

aktivasi lainnya (misalnya fungsi tangent sigmoid). Fungsi ReLU mencegah masalah gradien 

hilang dengan menurunkan gradien training secara eksponensial. Fungsi ReLU didefinisikan 

dalam persamaan berikut: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (3) 

di mana, 𝑓(𝑥) adalah keluaran ReLU dan x adalah sinyal masukan. 

Lapisan max-pooling digunakan untuk mengekstraksi fitur invarian dengan tingkat 

konvergensi yang efisien. Lapisan ini dapat mengurangi nilai-nilai non-maksimal dengan 

melakukan non-linear downsampling yang dapat mengurangi sampling komputasi selama 
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proses CNN. Flatten Layer digunakan untuk meratakan output dari lapisan CNN menjadi 

vektor satu dimensi. Formula matematik untuk tahap ini adalah sebagai berikut. 

𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑥) = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑋, [−1]) (4) 

Setelah itu pengolahan data dilanjutkan pada algoritma LSTM (DiPietro and Hager, 

2020). LSTM memiliki beberapa gate (gerbang) yang mengendalikan aliran informasi. 

a. Forget Gate: f(𝑥) = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  (5) 

b. Input Gate: 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (6) 

c. Candidate Memory Cell: 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡  (7) 

d. Output Gate: 𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (8) 

e. Cell State Update: 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡  (9) 

f. Hidden State Update: ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (10) 

dimana σ adalah fungsi aktivasi sigmoid, W adalah bobot, dan b adalah bias yang dipelajari. 

Sebagai tahap akhir dari kombinasi CNN-LSTM ini, terdapat dense layer yang berfungsi 

untuk menghasilkan output prediksi TMA dengan formula sebagai berikut: 

𝑦 = 𝑊. ℎ + 𝑏     (11) 

Dimana W adalah bobot yang dipelajari, b adalah bias, h adalah input dari LSTM, dan y 

adalah output (prediksi). 

Untuk meningkatkan akurasi, dilakukan berbagai uji parameter pada model CNN-LSTM. 

Percobaan meliputi variasi ukuran citra (128, 64, 32), jumlah plot curah hujan per sampel, 

nilai normalisasi (255–150), batch size (32–128), dan epoch (30–150). Plot curah hujan 

dibuat dengan latar hitam dan intensitas hujan semakin tinggi ditampilkan semakin putih. 

 
Gambar 3. Konsep prediksi TMA sungai. Input didasarkan pada data TMA 

historis dan peta 2 dimensi dari distribusi hujan untuk prediksi TMA pada jam 

ke 1, 2, hingga n. 

Seperti ditunjukkan pada Gambar 3, studi ini menguji pengaruh curah hujan terhadap 

kenaikan TMA menggunakan peta 2D distribusi hujan dan data historis. Pengujian dilakukan 

dengan jeda waktu 0~7 jam untuk menentukan selang waktu prediksi paling akurat. Hasilnya 

digunakan sebagai dasar penyusunan model prediksi TMA berdasarkan selisih waktu antara 

hujan dan respons muka air sungai (lihat persamaan 12). 

∆𝑡 = 𝑡𝑤𝑝 − 𝑡𝑟2𝑑     (12) 

dimana △t adalah selisih dari dua langkah waktu, twp adalah langkah waktu  prediksi TMA, 

dan tr2d adalah langkah waktu peta spasial curah hujan.  
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Studi ini menggunakan metode interpolasi Inverse Distance Weighting (IDW) pada data 

curah hujan telemetri sebanyak 26.280 waktu sebagai dataset pelatihan deep learning. 

Metode interpolasi IDW digunakan karena kemudahan dan kecepatan pengolahannya 

(Boke and Boke, 2017; Jiang et al., 2025). 

Metodologi pada Gambar 4 mengintegrasikan data real-time untuk memprediksi TMA 

Sungai Ciliwung dengan mempertimbangkan pengaruh debit keluar Bendungan Ciawi dan 

Sukamahi. Input berupa data isohiet, TMA inlet, dan debit keluaran digunakan untuk 

memprediksi TMA di Katulampa, Kampung Kalapa, dan MT. Haryono. Hubungan 

nonlinier antara TMA dan debit menunjukkan pengaruh operasi bendungan, sehingga model 

diharapkan merepresentasikan dinamika sungai lebih akurat dalam mendukung peringatan 

dini banjir. 

 
Gambar 4. Deep Learning untuk Prediksi TMA dengan Memasukkan Faktor 

debit aliran dari 2 Bendungan Kering (dry dam) 

Gambar 4 menyajikan grafik hubungan TMA dan debit keluar bendungan Sukamahi (a), 

grafik hubungan TMA dan debit keluar bendungan Ciawi (b), struktur aliran untuk masing-

masing bendungan di Ciliwung (c), dan konsep input dan output pada deep learning dengan 

memasukkan faktor bendungan (d). Vektor yang terhubung penuh dalam algoritma CNN 

memiliki loss function untuk menghitung kesalahan antara nilai yang diamati dan yang 

disimulasikan dengan membuat vektorisasi sinyal input. MSE digunakan sebagai fungsi loss 

dalam penelitian yang digunakan untuk menghitung error antara nilai yang disimulasikan 

dan yang diamati. Persamaan MSE adalah sebagai berikut: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑌𝑖 − 𝑂𝑖)

2𝑁
𝑖=1     (13) 

dimana, 𝑌𝑖 adalah hasil simulasinya, 𝑂𝑖 adalah data yang diamati, dan N adalah jumlah 

kumpulan data. 
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Keakuratan prediksi ketinggian air juga dievaluasi menggunakan koefisien determinasi (R2), 

efisiensi Nash-Sutcliffe (NSE) dan mean square error (MSE). Persamaan R2 dan NSE 

didefinisikan sebagai berikut: 

𝑅2 = [
∑ (𝑂𝑖−𝑂1̅̅ ̅̅ )
𝑛
𝑖=1 (𝑃𝑖−𝑃1̅̅ ̅)

∑ (𝑂𝑖−𝑂1̅̅ ̅̅ )
2𝑛

𝑖=1 (𝑃𝑖−𝑃1̅̅ ̅)
2]    (14) 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑃𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖−𝑂1̅̅ ̅̅ )
2𝑛

𝑖=1

              (15) 

dimana n adalah jumlah dataset yang memiliki TMA (m), Pi menunjukkan hasil prediksi, 𝑂1̅̅ ̅ 
adalah rata-rata dari data yang diamati dan Oi mewakili data yang diamati. 

Hasil Studi dan Pembahasan 

Gambar 5 menampilkan isohiet curah hujan per jam dari pos telemetri di hulu DAS 

Ciliwung. Sebanyak 26.280 plot periode 2022-2024 menunjukkan sebaran spasial intensitas 

hujan. Data ini penting untuk pelatihan model karena merepresentasikan pola hujan secara 

spasial, membantu model deep learning mengenali hubungan kompleks antara hujan dan 

TMA di hilir.  

 
Gambar 5. Isohiet data curah hujan dari pos telemetri 

Gambar 6 menunjukkan hasil prediksi TMA menggunakan model deep learning dengan 

berbagai lead time atau waktu prakiraan, yaitu 1 hingga 6 jam ke depan. Grafik di bagian atas 

menggambarkan perbandingan antara data observasi (garis hitam tebal) dan hasil prediksi 

model pada masing-masing waktu prediksi (1~6 jam), yang ditampilkan dengan garis warna 

berbeda. Secara umum, model mampu mengikuti tren fluktuasi TMA, meskipun terdapat 

deviasi kecil pada beberapa puncak nilai. 

Sementara itu, enam scatter plot di bagian bawah memperlihatkan hubungan antara nilai 

prediksi dan nilai observasi untuk masing-masing lead time. Nilai koefisien korelasi Pearson 

(rr) berkisar antara 0.55 hingga 0.67, dengan akurasi tertinggi pada prediksi 1 jam ke depan 

(rr = 0.67) dan menurun secara bertahap seiring bertambahnya lead time, misalnya menjadi 

rr = 0.55 pada 2 dan 3 jam, dan rr = 0.56 pada 6 jam. Hasil ini menunjukkan bahwa model 

memiliki kemampuan prediksi yang cukup baik dalam jangka pendek, namun akurasinya 

cenderung menurun seiring waktu, yang merupakan karakteristik umum dalam prediksi 

hidrologi berbasis data. 

Gambar 7 menunjukkan hasil prediksi TMA di MT. Haryono setelah model memasukkan 

faktor debit keluar dari bendungan sebagai salah satu variabel input. Grafik utama (TMA 

prediction) memperlihatkan bahwa prediksi model (garis merah) secara umum mampu 

mengikuti pola fluktuasi nilai observasi (garis hitam), termasuk dalam menangkap lonjakan 

TMA pada saat-saat tertentu. Hal ini menunjukkan bahwa integrasi data debit keluar dari 
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bendungan memberikan kontribusi positif dalam meningkatkan sensitivitas model terhadap 

perubahan mendadak akibat pelepasan air. 

 
Gambar 6. Prediksi TMA di pos MT Haryono dengan menggunakan ukuran 

pixel 64 dan ukuran sampel 20 

 

 
 

Gambar 7. Prediksi TMA di pos MT Haryono dengan menggunakan ukuran pixel 

64 dan ukuran sampel 20 setelah model memasukkan faktor debit keluar dari 

bendungan 

Grafik prediction errors di bagian kiri bawah memperlihatkan selisih antara nilai observasi 

dan prediksi terhadap waktu, dengan sebagian besar error berada dalam rentang ±0.3 meter, 

menandakan bahwa model cukup stabil dalam menjaga akurasi selama periode pengujian. 

Sementara itu, histogram distribution of errors menunjukkan distribusi galat yang bersifat 

simetris dan cenderung terpusat di sekitar nol, yang menandakan tidak adanya bias sistematis 

dalam hasil prediksi. Secara keseluruhan, hasil ini mendukung hipotesis bahwa 
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mempertimbangkan faktor operasi bendungan dapat meningkatkan performa model prediksi 

TMA. 

Gambar 8 dan 9 menampilkan hasil prediksi TMA di Pos Katulampa dan Kampung Kalapa 

setelah memasukkan variabel debit keluar bendungan ke dalam model. Di Katulampa, model 

mampu menangkap tren umum observasi meski kurang akurat pada puncak TMA; sebagian 

besar galat berada di bawah ±0.2 m dengan distribusi simetris di sekitar 0~0.1 m, 

menunjukkan stabilitas dan minim bias. Sementara itu, di Kampung Kalapa, garis prediksi 

(merah) berhasil mengikuti fluktuasi nilai aktual (hitam), terutama saat terjadi lonjakan TMA 

tajam, menandakan bahwa penambahan variabel debit bendungan meningkatkan 

kemampuan model mengenali dinamika aliran mendadak akibat pelepasan air. 

 

 
 

Gambar 8. Prediksi TMA di pos Katulampa setelah model memasukkan faktor 

debit keluar dari bendungan 

Grafik prediction errors menunjukkan sebagian besar kesalahan berada pada rentang kecil 

(-0.1 hingga 0.1 m), dengan beberapa outlier saat puncak aliran. Ini menandakan model 

masih sulit menangkap lonjakan ekstrem, meski akurasinya membaik. Histogram kesalahan 

yang terpusat di sekitar nol menunjukkan tidak adanya bias signifikan. Secara keseluruhan, 

penambahan data debit bendungan meningkatkan akurasi prediksi TMA di hilir seperti di 

Kampung Kalapa. 

Tabel 1 dan 2 menunjukkan perbandingan hasil uji akurasi model prediksi TMA di tiga pos 

pengamatan (Katulampa, Kampung Kalapa, dan MT. Haryono) sebelum dan sesudah 

penambahan jumlah image curah hujan serta variabel debit keluaran dari bendungan. Pada 

Tabel 1 (sebelum penambahan variabel), nilai korelasi (CC), Mean Absolute Error (MAE), 

dan Nash-Sutcliffe Efficiency (NSE) menunjukkan bahwa akurasi model bervariasi antar 

lokasi. Pos Kampung Kalapa memiliki performa paling baik (CC=0.82 dan NSE=0.71) 

dengan kesalahan prediksi rata-rata (MAE) paling kecil, yaitu 0.069 m. Sebaliknya, Pos MT. 

Haryono menunjukkan akurasi terendah, terutama dari sisi MAE yang sangat tinggi (0.412 

m), yang mengindikasikan adanya deviasi besar antara prediksi dan data aktual. 
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Gambar 9. Prediksi TMA di pos Kp. Kalapa setelah model memasukkan 

faktor debit keluar dari bendungan 

Tabel 1. Prediksi TMA sebelum penambahan jumlah image curah hujan dan faktor debit 

keluaran bendungan 

Pos TMA Uji Akurasi 

CC MAE NSE 

Katulampa 0.58 0.11 0.68 

Kp. Kalapa 0.82 0.069 0.71 

MT. Haryono 0.65 0.412 0.58 

Tabel 2. Prediksi TMA setelah penambahan jumlah image curah hujan dan faktor debit 

keluaran bendungan 

Pos TMA Uji Akurasi 

CC MAE NSE 

Katulampa 0.83 0.062 0.75 

Kp. Kalapa 0.82 0.020 0.81 

MT. Haryono 0.88 0.137 0.85 

Terlihat pada Tabel 1 dan 2, akurasi prediksi TMA yang ditunjukkan MAE di Kp. Kalapa 

selalu lebih tinggi dibandingkan Katulampa dan MT. Haryono dapat dijelaskan dari posisi 

geografis serta relevansi input model terhadap kondisi hidrologis. Kp. Kalapa berada di 

tengah aliran, sehingga pola TMA di titik ini merupakan hasil integrasi dari hulu (Katulampa) 

dan pengaruh bendungan Ciawi serta Sukamahi. Input berupa curah hujan spasial, TMA 

inlet, dan debit outlet bendungan lebih sesuai dengan kondisi di Kp. Kalapa, sehingga model 

CNN-LSTM mampu menangkap pola spasial-temporal dengan lebih baik. Sebaliknya, 

Katulampa lebih dipengaruhi oleh curah hujan lokal di hulu yang variabilitasnya tinggi, 

sementara MT. Haryono di hilir menghadapi kompleksitas tambahan seperti kontribusi anak 

sungai dan limpasan perkotaan. 

Selain itu, kualitas data dan tingkat noise juga berperan. Data di Kp. Kalapa cenderung lebih 

konsisten karena aliran sudah tersaring oleh bendungan, sehingga pola TMA lebih stabil dan 
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mudah diprediksi. Di Katulampa, curah hujan ekstrem atau variabilitas kecil dapat 

menurunkan akurasi, sedangkan di MT. Haryono faktor antropogenik seperti urbanisasi dan 

sistem drainase kota menambah ketidakpastian.  

Untuk skenario jumlah data 17,520 image (sebelum penambahan), kombinasi 

hyperparameter yang optimal cenderung menggunakan ukuran citra 64, normalisasi ke 255, 

batch size 64, dan epoch sekitar 100. Ukuran citra 64 menjaga keseimbangan antara detail 

spasial dan efisiensi komputasi, sementara normalisasi penuh (0-255) membantu stabilitas 

training. Batch size 64 cukup untuk menjaga generalisasi tanpa terlalu membebani memori, 

dan epoch 100 memberi waktu cukup bagi model CNN-LSTM untuk belajar pola spasial-

temporal tanpa overfitting. 

Sedangkan setelah penambahan image curah hujan menjadi 26,280, hasil lebih baik karena 

jumlah data yang lebih besar meningkatkan kemampuan model dalam mengenali variasi 

pola hujan dan respon hidrologis. Pada skenario ini, kombinasi optimal adalah ukuran citra 

128, normalisasi ke 200, batch size 128, dan epoch 150. Ukuran citra lebih besar 

memungkinkan model memanfaatkan detail spasial tambahan, batch size 128 lebih stabil 

dengan data besar, dan epoch 150 memberi kesempatan model untuk konvergen dengan 

baik. Semakin banyak data, model CNN-LSTM dapat menangkap kompleksitas sistem 

hidrologi dengan lebih akurat, sehingga prediksi TMA menjadi lebih presisi. Di Katulampa, 

CC naik dari 0.58 ke 0.83, MAE turun ke 0.062 m, dan NSE ke 0.75; di MT. Haryono, NSE 

naik ke 0.85. Kinerja terbaik diperoleh di Kampung Kalapa (NSE 0.81; MAE 0.020 m), 

menunjukkan efektivitas kombinasi data hujan spasial dan debit bendungan. Selisih prediksi-

observasi masih wajar, dipengaruhi faktor lapangan seperti pengaturan pintu air atau 

perubahan morfologi sungai, sehingga integrasi hasil model dengan pengetahuan lapangan 

tetap penting. Jumlah data spasial yang lebih besar berkontribusi pada peningkatan performa 

model, karena memperkaya representasi pola curah hujan dan aliran sungai yang dipelajari. 

Hasil simulasi penerapan CNN-LSTM pada prediksi tinggi muka air (TMA) di DAS 

Ciliwung menunjukkan konsistensi dengan hasil penelitian sebelumnya, di mana 

peningkatan jumlah data dan resolusi spasial berkontribusi terhadap akurasi model yang lebih 

tinggi. Dua studi sebelumnya (Deng, Chen and Huang, 2022; Li et al., 2022a) menegaskan 

bahwa performa CNN-LSTM meningkat seiring bertambahnya data curah hujan dan debit 

serta sangat bergantung pada pemilihan hyperparameter seperti batch size dan epoch, sejalan 

dengan hasil tuning yang dilakukan dalam penelitian ini. Penelitian lain (Oddo et al., 2024) 

juga melaporkan bahwa resolusi citra yang lebih detail mampu memperbaiki kualitas 

prediksi, mendukung keputusan penggunaan citra berukuran 128 pada skenario dengan 

jumlah data yang lebih besar. 

Keterbatasan penelitian ini terletak pada variabel yang digunakan, yaitu curah hujan, debit, 

dan operasi bendungan. Faktor lain seperti tata guna lahan, sedimentasi, dan kondisi 

infrastruktur belum dimasukkan. Selain itu, penelitian ini belum mencakup integrasi model 

dengan sistem peringatan dini atau pengambilan keputusan operasional di lapangan. 

Penelitian selanjutnya perlu difokuskan pada pengayaan data dan pengembangan model. 

Pengumpulan data yang lebih panjang dan beragam dari pengukuran, satelit, atau Internet of 

Thing (IoT) akan meningkatkan akurasi. Penambahan variabel seperti kelembapan tanah, 

karakteristik DAS, dan morfologi sungai membantu menangkap dinamika hidrologi yang 

lebih kompleks. Dari sisi metode, penerapan model deep learning lanjutan seperti LSTM 
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dengan attention atau physics-informed machine learning berpotensi meningkatkan kinerja. 

Validasi di lokasi lain penting untuk menguji generalisasi, sementara integrasi ke sistem 

peringatan dini berbasis dashboard dapat menjadikan model lebih aplikatif bagi pengelolaan 

bendungan. 

Kesimpulan dan Saran 

Kesimpulan 

Penelitian ini menunjukkan bahwa performa awal model prediksi TMA berbeda-beda di 

setiap pos pengamatan. Sebelum penambahan data pendukung, Pos Kampung Kalapa sudah 

menunjukkan performa yang relatif baik dengan nilai korelasi (CC) sebesar 0.82 dan nilai 

NSE sebesar 0.71. Sebaliknya, Pos MT. Haryono memiliki akurasi yang kurang memadai, 

ditunjukkan oleh nilai MAE yang cukup tinggi (0.412 m). Hal ini mengindikasikan bahwa 

prediksi di beberapa lokasi masih rentan terhadap error dan belum cukup andal untuk 

kebutuhan operasional. Setelah dilakukan penambahan jumlah citra curah hujan dan 

dimasukkannya faktor debit keluaran bendungan sebagai variabel tambahan, model 

menunjukkan peningkatan performa yang signifikan di seluruh pos. Peningkatan paling 

mencolok terjadi di Pos Katulampa dan MT. Haryono, di mana nilai korelasi dan NSE 

meningkat tajam serta nilai MAE menurun drastis. Di Kampung Kalapa, peningkatan 

akurasi juga terlihat, dengan MAE turun hingga hanya 0.020 m dan nilai NSE naik ke 0.81, 

menjadikan pos ini sebagai titik dengan prediksi paling akurat. 

Akurasi model pada ruas tengah (Kp. Kalapa) tetap tinggi baik sebelum maupun setelah 

penambahan jumlah citra hujan dan debit pelepasan bendungan karena lokasi ini secara 

hidrologis sudah merepresentasikan integrasi aliran dari hulu dan pengaruh bendungan. Pola 

TMA di Kp. Kalapa relatif stabil dan konsisten, sehingga bahkan dengan jumlah data yang 

lebih sedikit, model CNN-LSTM sudah mampu menangkap karakteristik utama yang 

memengaruhi fluktuasi muka air di titik tersebut. Penambahan jumlah citra hujan dan debit 

pelepasan bendungan memperkaya informasi spasial-temporal, tetapi dampaknya lebih 

signifikan pada titik hulu (Katulampa) dan hilir (MT. Haryono) yang memiliki variabilitas 

lebih kompleks. Di Kp. Kalapa, pola aliran yang sudah terfilter membuat tambahan data tidak 

banyak mengubah performa, sehingga akurasi tetap sama baiknya. Dengan kata lain, ruas 

tengah memiliki kondisi hidrologis yang lebih representatif dan mudah diprediksi, sehingga 

model mencapai akurasi optimal bahkan sebelum data tambahan dimasukkan. 

Penerapan deep learning dengan arsitektur CNN-LSTM dalam prediksi tinggi muka air 

(TMA) menunjukkan sejumlah keunggulan yang signifikan. Model ini mampu menangkap 

pola spasial-temporal secara bersamaan, sehingga dapat memanfaatkan data citra curah hujan 

sekaligus dinamika aliran sungai. Keunggulan lain adalah fleksibilitas dalam mengolah data 

besar, sehingga semakin banyak citra hujan dan variabel hidrologis yang dimasukkan, 

semakin baik kemampuan model dalam mengenali kompleksitas sistem.  

Namun, terdapat pula kelemahan yang perlu diperhatikan untuk riset lanjutan. Model ini 

sangat bergantung pada kualitas dan kelengkapan data; noise atau ketidakakuratan data 

hidrologis dapat menurunkan performa. Selain itu, interpretabilitas model juga terbatas, 

sehingga sulit menjelaskan secara detail hubungan sebab-akibat antara curah hujan, debit 

bendungan, dan TMA. Oleh karena itu, riset lanjutan dapat diarahkan pada pengembangan 
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metode explainable AI, optimasi hyperparameter yang lebih adaptif, serta integrasi dengan 

model hidrologi fisik untuk meningkatkan akurasi sekaligus transparansi hasil prediksi. 

Saran 

Pengembangan model prediksi TMA disarankan menggunakan data lebih lengkap, terutama 

debit keluaran bendungan dan citra hujan resolusi tinggi, yang terbukti meningkatkan akurasi 

di wilayah rawan banjir seperti Kampung Kalapa. Evaluasi perlu dilakukan pada pos 

berakurasi rendah seperti MT. Haryono untuk menelusuri sumber kesalahan. Peningkatan 

resolusi data, pengayaan jangka panjang, serta penambahan variabel DAS dan morfologi 

sungai akan memperbaiki kinerja model. Uji di lokasi lain dan integrasi ke dashboard 

operasional akan memperluas penerapan dan manfaatnya. 
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