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Intisari 

Soil erosion poses a serious threat to environmental sustainability, particularly in 

tropical watersheds with complex topographic and hydrological conditions. Accurate 

and spatially reliable erosion risk mapping is therefore essential for effective land 

management. This study evaluates the performance of five machine learning 

models—Random Forest (RF), Gradient Boosting Tree (GBT), Decision Tree (DT), 

Generalized Linear Model (GLM), and Support Vector Machine (SVM)—for 

erosion risk prediction in the Tamalate Watershed, Indonesia, by integrating 

topographic and remote sensing–derived variables. Erosion and non-erosion ground-

truth samples (553 and 793 points, respectively) were obtained through visual 

interpretation of temporally consistent high-resolution Google Earth imagery aligned 

with Landsat-9 acquisition, ensuring data validity. Eight environmental predictors 

were derived at a consistent spatial resolution and screened for multicollinearity (VIF 

< 3). Model performance was assessed using spatially explicit validation based on 

accuracy, AUC, precision, recall, sensitivity, specificity, and F-measure. Results 

show that RF achieved the best overall performance (accuracy = 0.727; AUC = 

0.772), comparable to recent erosion modeling studies in similar tropical 

environments. Topographic Wetness Index (TWI) and Normalized Difference 

Moisture Index (NDMI) were identified as the most influential predictors. While 

high recall and sensitivity indicate strong capability to detect erosion-prone areas, 

relatively low specificity—particularly in GLM and DT—suggests a tendency to 

overestimate erosion risk, with implications for management prioritization. 

Ensemble-based models produced more stable and realistic spatial risk patterns. This 

study provides a transferable machine learning framework for erosion risk mapping 

to support sustainable watershed management in data-limited tropical regions.  

Keywords :  Erosion risk, machine learning, remote sensing, topographic indices, 

Tamalate watershed 
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Introduction  

Soil erosion remains one of the most pressing and widespread forms of land 

degradation, particularly in tropical watersheds that experience intense rainfall, 

steep terrain, and anthropogenic pressure (Panagos et al., 2015; Poesen, 2017). In 

many developing regions, including Indonesia, watershed ecosystems are 

increasingly threatened by unsustainable land-use practices such as deforestation, 

shifting cultivation, and poorly managed agriculture (Eekhout & de Vente, 2022). 

The Tamalate Watershed in Gorontalo Province exemplifies this vulnerability, 

where topographic variability, unregulated slope farming, and vegetation clearance 

have significantly accelerated erosion processes. These conditions not only lead to 

the loss of fertile topsoil (Woldemariam et al., 2018) but also contribute to 

sedimentation in downstream water bodies, reducing the effectiveness of irrigation 

infrastructure and increasing the risk of flash floods (Gaubi et al., 2017). Despite 

the severity of erosion-related impacts, erosion risk assessment in many Indonesian 

watersheds remains limited to generalized approaches, with insufficient attention to 

spatial prediction reliability and local process representation (Susanti et al., 2019). 

Conventional erosion modeling approaches—such as the Universal Soil Loss 

Equation (USLE) or Revised USLE (RUSLE)—have been widely applied due to 

their simplicity and accessibility (El Jazouli et al., 2017; Issaka & Ashraf, 2017). 

However, these models rely on linear assumptions and often fail to capture the 

spatial heterogeneity and complex interactions among environmental factors 

(Borrelli et al., 2020). Furthermore, they are generally site-specific and not readily 

transferable to regions with different climatic or geomorphological conditions. In 

the Indonesian and broader tropical context, most erosion studies continue to rely 

on empirical or single-model approaches, while systematic comparisons of multiple 

machine learning algorithms using spatially validated datasets remain scarce 

(Dharmawan et al., 2023). As the availability of high-resolution remote sensing data 

and computing power grows, machine learning (ML) methods have emerged as a 

transformative tool for environmental modelling (Zhong et al., 2021). ML 

algorithms can identify intricate, non-linear patterns within large datasets and have 

demonstrated high performance in spatial prediction tasks, including erosion risk 

assessment (Arif et al., 2017). Nevertheless, the applicability and relative 

performance of different machine learning models in heterogeneous tropical 

watersheds have not been sufficiently explored, particularly at the watershed scale 

(Olii et al., 2025). 

In this study, a data-driven modeling approach is employed to map erosion risks in 

the Tamalate Watershed by integrating five machine learning algorithms: Random 

Forest (RF), Gradient Boosted Trees (GBT), Decision Tree (DT), Generalized 

Linear Model (GLM), and Support Vector Machine (SVM). These models are 

trained using a combination of terrain attributes, topographic and satellite-derived 

indices derived from satellite imagery and GIS-based spatial analysis. The 

performance of each algorithm is compared using rigorous classification metrics to 

identify the most suitable method for erosion prediction in this context. The novelty 

of this research lies in the systematic comparison of multiple machine learning 

models for erosion risk mapping in a tropical watershed that has not been 
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extensively studied, coupled with the use of diverse topographic and satellite-

derived indices predictors integrated from GIS and remote sensing. By providing 

spatially explicit erosion risk maps and model-based performance insights, this 

study offers practical support for watershed management, conservation 

prioritization, and land-use planning in data-limited tropical regions. Moreover, this 

study contributes a transferable framework for erosion risk modeling that can 

inform spatial planning and conservation efforts in similar vulnerable watersheds 

across Indonesia.  

Methodology 

Data 

The Digital Elevation Model (DEM) utilized in this research was obtained from the 

Earth Explorer platform (https://earthexplorer.usgs.gov/) , based on the Landsat 9 

dataset (LC08_L1TP_113060_20241230_20250104_02_T1), captured on 

December 30, 2024. This dataset was chosen due to its suitable spatial resolution 

and coverage of the study area. All spatial datasets used in this study were processed 

and standardized to a raster spatial resolution of 30 × 30 m² to ensure consistency 

across analyses. Administrative boundaries were retrieved from the GADM 

database (https://gadm.org/), known for its comprehensive and regularly updated 

geopolitical data. To delineate erosion and non-erosion areas, high-resolution 

imagery from Google Earth was interpreted visually, with image capture dates 

intentionally aligned with the Landsat 9 acquisition date. This temporal alignment 

between satellite imagery and ground-truth observations ensures that the input data 

reflects consistent environmental conditions. As a result, the erosion hazard models 

developed in this study benefit from improved temporal accuracy, thereby 

increasing the robustness and validity of the spatial analysis and prediction outputs. 

Method 

This study was designed to develop an advanced erosion risk model for the 

Tamalate Watershed (Figure 1) by integrating topographic indices and satellite-

derived indices into a machine learning framework. The overall methodology 

comprised four major phases: (1) selection and analysis of erosion risk factors, 

(2) erosion sample selection and dataset preparation, (3) model evaluation 

using multiple performance metrics (4) erosion risk modeling with machine 

learning and mapping. Each step was carefully structured to ensure the 

methodological rigor necessary for spatial predictive modeling in a highly dynamic 

watershed environment. 

1. Selection and Analysis of Erosion Risk Factors 

This study began by selecting key factors associated with erosion, incorporating 

both topographic and remote sensing indices, which represent the dominant 

physical and surface processes controlling soil detachment and transport in tropical 

watersheds. Specifically, four topographic factors—Sediment Transport Index 

(STI), Topographic Wetness Index (TWI), Terrain Ruggedness Index (TRI), and 

https://earthexplorer.usgs.gov/
https://gadm.org/
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Stream Power Index (SPI)—were extracted from a high-resolution Digital 

Elevation Model (DEM), as these indices describe runoff concentration, flow 

energy, terrain instability, and erosion potential driven by topographic controls. 

Concurrently, remote sensing-derived indices, including the Normalized Difference 

Tillage Index (NDTI), Normalized Difference Moisture Index (NDMI), Soil 

Adjusted Vegetation Index (SAVI), and Vegetation Condition Index (VCI), were 

generated from Landsat-9 imagery to characterize land surface disturbance, soil 

moisture conditions, vegetation cover, and vegetation health, which have been 

widely validated as key indicators influencing erosion processes in humid tropical 

environments.. All indices were processed and standardized using ArcGIS 10.8 

(Figures 2 and 3) to ensure spatial alignment and resolution uniformity across the 

dataset (Table 1). 

 
Figure 1. Study site 
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Table 1. Class n score of topographic and remote sensing indices 

Indices Erosion Risk Factor Class Score 

Topographic Sediment Transport Index (STI)  <5 

5 – 10 

10 -20 

20 – 40 

>40 

1 

2 

3 

4 

5 

Topographic Wetness Index (TWI) <4 

4 – 8 

8 – 12 

12 – 16 

>16 

1 

2 

3 

4 

5 

Terrain Ruggedness Index (TRI) <0.1 

0.1 – 0.2 

0.2 – 0.3 

0.3 – 0.4 

>0.4 

1 

2 

3 

4 

5 

Stream Power Index (SPI) <2 

2 – 4 

4 – 6 

6 – 8 

>8 

1 

2 

3 

4 

5 

Remote 

Sensing 

Normalized Difference Tillage Index 

(NDTI) 

<-0.4 

-0.4 – -0.2 

-0.2 – 0.0 

0.0 – 0.2 

>0.2 

1 

2 

3 

4 

5 

Normalized Difference Moisture Index 

(NDMI) 

>0.3 

0.1 – 0.3 

-0.1 – 0.1 

-0.3 – -0.1 

<-0.3 

1 

2 

3 

4 

5 

Soil Adjusted Vegetation Index 

(SAVI) 

>0.8 

0.6 – 0.8 

0.4 – 0.6 

0.2 – 0.4 

<0.2 

1 

2 

3 

4 

5 

Vegetation Condition Index (VCI) >80 

60 – 80 

40 – 60 

20 – 40 

<20 

1 

2 

3 

4 

5 

2. Erosion Sample Selection and Dataset Preparation 

553 erosion and 793 non-erosion points were identified via high-resolution visual 

interpretation in Google Earth based on surface features (Figure 1) and used as 

ground-truth data for model training and validation. To minimize potential 

interpretation bias, samples were selected using consistent visual criteria and 

distributed across different topographic and land-cover conditions. Temporal 

consistency between Google Earth imagery and Landsat-9 acquisition was ensured 

to reduce misclassification. Eight environmental indices (STI, TWI, TRI, SPI, 

NDTI, NDMI, SAVI, BSI) were extracted for each point using ArcGIS 10.8 to form 

the predictor dataset, and multicollinearity was assessed using VIF and TOL 

metrics (Band et al., 2020; Ghorbanzadeh et al., 2020).  
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3. Model Evaluation Using Multiple Performance Metrics 

Model evaluation using multiple performance metrics involves assessing the 

model's effectiveness through various measures, such as accuracy, classification 

error, AUC, precision, recall, F-measure, sensitivity, and specificity. These metrics 

provide a comprehensive understanding of how well the model predicts erosion 

risks, taking into account both the true positive and false positive rates. This 

evaluation process ensures that the model performs optimally and generalizes well 

to unseen data, providing reliable results for erosion risk assessment. 

 

 

 

Figure 2. Topographic indices 
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Figure 3. Remote sensing indices 

4. Erosion Risk Modeling with Machine Learning and Mapping 

Erosion risk was modeled using five machine learning algorithms: RF, GBT, DT, 

GLM, and SVM. Each model was trained to predict erosion risk based on the 

prepared dataset. To evaluate the contribution and reliability of each model, its 

predictive performance was assessed, and model-specific weights were derived. 

These weights were later used to integrate the outputs, enhancing the overall 

accuracy of erosion risk mapping, as expressed in the following equation: 

( )Erosion Risk = 
n

i i

i i

W S
=

              (1) 

where Wi is the relative weight (importance) of factor i, and Si is the classified score 

based on Table 1. 
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min

max min

Erosion Risk  = i
norm

X X

X X

−

−
            (2) 

where X is the original value of erosion risk, Xmin
 is the minimum value of erosion 

risk, and Xmax
 is the maximum value of erosion risk. The normalized erosion risk 

values (ranging from 0 to 1) were classified into five categories—Very Low, Low, 

Moderate, High, and Very High—using equal interval classification, with each 

class spanning a range of 0.2. 

Result and Discussion 

The results of this study provide a comprehensive evaluation of erosion risk 

modeling using multiple machine learning algorithms, supported by robust 

statistical assessments and spatial analysis. Table 2 shows all factors in the analysis 

have VIF values below 3, indicating that there is no harmful multicollinearity that 

could negatively impact the regression model. While a few variables—specifically 

VCI, TWI, and SAVI—demonstrate moderate correlation with other predictors, 

their VIF values remain within acceptable limits and do not pose a serious concern. 

Therefore, it is appropriate to retain all variables for subsequent regression analysis 

without the need for exclusion or adjustment. 

Table 2. Multicollinearity Assessment of Erosion Risk Factors 

Erosion risk 

Factors 

R2 TOL VIF Interpretation 

VCI 0.57 0.43 2.30 Moderate multicollinearity, still acceptable 

SAVI 0.51 0.49 2.03 Moderate multicollinearity, still acceptable 

NDMI 0.16 0.84 1.19 No multicollinearity 

NDTI 0.18 0.82 1.22 No multicollinearity 

TWI 0.56 0.44 2.25 Moderate multicollinearity, still acceptable 

SPI 0.41 0.59 1.70 No serious multicollinearity 

TRI 0.13 0.87 1.15 No multicollinearity 

STI 0.31 0.69 1.46 No multicollinearity 

Table 3 illustrates the relative importance of various environmental factors in 

predicting erosion risk using five machine learning models (RF, GBT, DT, GLM, 

SVM). Among the variables, TWI consistently holds the highest weight—

especially in the RF (0.326) and SVM (0.238) models—indicating its critical role 

in identifying areas prone to moisture accumulation and surface runoff, which are 

key drivers of erosion. NDMI and STI also show substantial importance across 

models, reflecting the influence of soil moisture and runoff on erosion processes. 

In contrast, indices such as VCI and NDTI have relatively lower weights, 

suggesting a more indirect or minor role in erosion prediction. Moderate 

contributions are observed for terrain-related indices, such as TRI and SPI, which 

influence how water moves across landscapes. Overall, the results suggest that 

topography and hydrological indicators are the most influential factors in erosion 

modeling, whereas vegetation and land management indices contribute less 

significantly. 
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Table 3. Weight of each machine learning model 

Erosion risk 

Factors 

Machine Learning 

RF GBT DT  GLM SVM 

VCI 0.037 0.047 0.031 0.045 0.087 

SAVI 0.045 0.049 0.034 0.120 0.086 

NDMI 0.095 0.103 0.118 0.253 0.169 

NDTI 0.016 0.015 0.039 0.101 0.098 

TWI 0.326 0.249 0.050 0.098 0.238 

SPI 0.038 0.060 0.023 0.072 0.149 

TRI 0.054 0.118 0.092 0.194 0.128 

STI 0.086 0.119 0.106 0.187 0.128 

The performance metrics of the five machine learning models (RF, GBT, DT, GLM, 

and SVM) in Table 4 align with the variable importance trends observed earlier, 

confirming the predictive power of topographic and moisture-related indices in 

erosion risk modeling. Random Forest (RF) demonstrates the highest overall 

performance with the highest accuracy (0.727), AUC (0.772), and F-measure 

(0.798), likely due to its strong handling of complex interactions among dominant 

predictors like TWI and NDMI. RF, DT, and GLM share the highest recall and 

sensitivity (0.916), indicating their strong ability to correctly identify erosion-prone 

areas, which is crucial in risk prevention. However, specificity remains relatively 

low across all models, particularly in the GLM (0.411), suggesting challenges in 

correctly identifying non-erosion areas, which may be due to class imbalance or 

overlapping feature distributions. SVM shows the highest precision (0.734) and 

specificity (0.558), suggesting it is more conservative in its predictions, leading to 

fewer false positives. Overall, RF offers the most balanced performance, effectively 

leveraging the most influential factors such as TWI and STI, thereby reinforcing 

the previous conclusion that terrain and hydrological indicators are critical for 

accurate erosion risk prediction. 

Table 4. Performance metrics of each machine learning model 

Performance Metrics Machine Learning 

RF GBT DT  GLM SVM 

Accuracy 0.727 0.716 0.716 0.708 0.721 

Classification Error 0.273 0.284 0.284 0.292 0.279 

AUC 0.772 0.765 0.736 0.763 0.742 

Precision 0.707 0.713 0.697 0.691 0.734 

Recall 0.916 0.872 0.916 0.916 0.836 

F-measure 0.798 0.784 0.792 0.787 0.780 

Sensitivity 0.916 0.872 0.916 0.916 0.836 

Specificity 0.456 0.495 0.431 0.411 0.558 

The erosion risk classification Table 5 and Figure 4 reveal notable differences in 

how each machine learning model categorizes the study area across five risk levels, 

which directly reflects their internal mechanisms and the relative weight they assign 

to various environmental factors. The variable importance analysis further indicates 

that topographic controls, such as TWI and SPI, together with vegetation-related 
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indicators such as NDMI, play a dominant role in shaping erosion susceptibility 

within the watershed. These variables are closely associated with known erosion 

processes, where moisture accumulation, flow concentration, and reduced 

vegetation cover on steep slopes intensify soil detachment and sediment transport, 

leading to spatial clustering of high-risk zones. RF, which places strong importance 

on TWI and NDMI, classifies the majority of the area as low (50.0%) and very low 

(22.0%) risk. This conservative risk estimation is consistent with RF's ensemble 

nature, which reduces overfitting and captures complex, non-linear interactions 

among dominant variables, particularly in landscapes characterized by 

heterogeneous terrain and variable vegetation conditions. In contrast, the Decision 

Tree (DT) model, which has a simpler structure and tends to overfit, assigns a much 

larger area to high (34.9%) and very high (4.5%) risk. This likely results from DT’s 

sensitivity to strong local patterns in a few highly weighted variables, such as NDMI 

and TRI, without sufficient generalization, causing steep and sparsely vegetated 

areas to be disproportionately classified as high-risk. GBT and SVM, which strike 

a balance between model complexity and generalization, classify the majority of 

the area as moderate risk (53.3% and 54.8%, respectively), indicating a cautious but 

balanced risk assessment. GLM, which is linear and less capable of capturing 

complex variable interactions, also shows a higher percentage in moderate (42.1%) 

and high (25.2%) categories, possibly due to its limitations in modeling the non-

linear behavior of erosion processes. These variations highlight how model 

architecture, learning strategies, and sensitivity to feature importance significantly 

impact erosion risk predictions, particularly when dominant factors such as terrain 

and moisture dynamics are involved. 
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Figure 4. Spatial distribution of erosion risk 
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Table 5. Distribution of classes of erosion risk for each machine learning 

Classes of 

Erosion Risk 

RF GBT DT  GLM SVM 

Km2 % Km2 % Km2 % Km2 % Km2 % 

Very Low 22.8 22.0 6.2 5.9 4.3 4.1 5.3 5.1 7.3 7.0 

Low 51.8 50.0 33.5 32.3 30.1 29.0 27.5 26.5 35.1 33.9 

Moderate 25.4 24.5 55.2 53.3 28.4 27.4 43.6 42.1 56.8 54.8 

High 3.5 3.3 8.6 8.3 36.2 34.9 26.1 25.2 4.4 4.2 

Very High 0.2 0.2 0.2 0.2 4.7 4.5 1.2 1.2 0.1 0.1 

Total 103.7 100.0 103.7 100.0 103.7 100.0 103.7 100.0 103.7 100.0 

Discussion 

The results of this study present several critical findings that merit in-depth 

discussion in the context of erosion risk modeling. The initial multicollinearity 

assessment confirms the statistical validity of the selected predictors, with all 

variables demonstrating VIF values below the commonly accepted threshold of 3 

(O’brien, 2007). This ensures that the regression-based interpretations and machine 

learning models are not undermined by redundant information, thereby supporting 

the robustness of the variable selection process. However, the comparative analysis 

of variable importance across different algorithms reveals significant differences in 

model sensitivity to environmental parameters. Notably, RF and SVM consistently 

assign greater weight to topographic and hydrological indices—particularly TWI 

and NDMI—which is consistent with their superior predictive accuracy and 

balanced classification performance (Cutler et al., 2007; Fernández et al., 2023). 

The superior performance of ensemble-based models such as RF and GBT can be 

attributed to their ability to aggregate multiple decision rules and reduce variance, 

enabling them to better capture terrain variability and spectral heterogeneity 

characteristic of the Tamalate Watershed, where steep slopes, variable moisture 

conditions, and heterogeneous vegetation cover coexist. In contrast, DT model 

tends to overfit by emphasizing fewer dominant variables, leading to an 

overestimation of high and very high-risk zones (Kotsiantis, 2013). This 

overestimation is spatially evident in areas characterized by steep slopes and sparse 

vegetation cover, where localized patterns dominate decision rules and reduce the 

model’s capacity to generalize across diverse landscape conditions. This limitation 

underscores the model's reduced generalizability in heterogeneous landscapes. 

Furthermore, although several models show high sensitivity and recall—crucial for 

identifying erosion-prone areas—they generally exhibit low specificity, particularly 

GLM and DT, indicating challenges in accurately detecting areas of minimal risk 

(Chawla et al., 2002). Such discrepancies may stem from imbalanced class 

distributions or overlapping feature spaces. The spatial distribution of high-risk 

zones further reflects the combined influence of topography and vegetation 

dynamics, where areas with high flow accumulation, elevated stream power, and 

reduced vegetation density consistently correspond to higher predicted erosion risk.  

Lastly, the spatial patterns derived from the classification outputs demonstrate that 

model architecture and complexity play a decisive role in the risk stratification of 

the landscape. Ensemble methods such as RF and GBT offer more nuanced and 

stable classifications, suggesting their suitability for applications requiring spatially 

explicit erosion risk assessments (Breiman, 2001; Friedman, 2001). Although a 
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formal uncertainty analysis was not conducted, potential sources of uncertainty 

related to input data quality, visual sample interpretation, and model structure have 

been acknowledged, and future work may incorporate uncertainty quantification 

approaches such as ensemble agreement analysis or probabilistic modeling to 

further strengthen predictive confidence. Overall, these findings emphasize the 

importance of selecting algorithms that not only perform well statistically but also 

reflect realistic spatial processes, and they advocate for the integration of diverse 

environmental indicators to enhance the reliability of erosion modeling. 

Conclusions 

This study demonstrates the effectiveness of machine learning algorithms in 

modeling erosion risk by integrating topographic, hydrological, and vegetation-

related indicators. The absence of harmful multicollinearity among the predictors 

ensures the robustness of the input variables and supports their combined use in 

predictive modeling. Among the models tested, RF consistently outperforms others 

in terms of accuracy, AUC, and F-measure, largely due to its ability to capture 

complex, nonlinear interactions, especially among key factors such as TWI and 

NDMI. In contrast, simpler models like DT exhibit tendencies toward overfitting, 

leading to inflated high-risk classifications that may lack generalizability. The 

spatial distribution of erosion risk classes further confirms that model architecture 

significantly influences classification outcomes, with ensemble approaches like RF 

and GBT offering more balanced and realistic risk estimates. While high recall and 

sensitivity across models indicate their strong capacity to detect erosion-prone 

areas, the generally low specificity—particularly in GLM and DT—highlights 

ongoing challenges in distinguishing non-risk zones and increases the likelihood of 

false-positive predictions, partly due to class imbalance in the training data. It 

should be noted that the conclusions drawn from this study are based on a 

single watershed and may not be directly transferable to regions with different 

geomorphological, climatic, or land-use characteristics. These findings 

underscore the importance of selecting appropriate machine learning models and 

considering multiple environmental variables for more accurate and actionable 

erosion risk assessments. Future research should explore the integration of 

additional physical and socio-environmental factors and address class imbalance to 

further enhance model specificity and generalizability. 

Suggestion 

Future research should incorporate additional variables such as detailed land use, 

long-term rainfall data, and socio-economic factors. Exploring ensemble learning 

techniques and improving field validation are recommended, particularly through 

targeted field surveys and longitudinal monitoring to capture temporal erosion 

dynamics better and reduce classification uncertainty. Integrating models into 

decision-support GIS platforms can enhance their applicability for sustainable 

watershed and erosion risk management, allowing local agencies to support erosion 

control planning, prioritize conservation measures, and allocate resources more 

effectively at the regional scale. 
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