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Intisari

Soil erosion poses a serious threat to environmental sustainability, particularly in
tropical watersheds with complex topographic and hydrological conditions. Accurate
and spatially reliable erosion risk mapping is therefore essential for effective land
management. This study evaluates the performance of five machine learning
models—Random Forest (RF), Gradient Boosting Tree (GBT), Decision Tree (DT),
Generalized Linear Model (GLM), and Support Vector Machine (SVM)—for
erosion risk prediction in the Tamalate Watershed, Indonesia, by integrating
topographic and remote sensing—derived variables. Erosion and non-erosion ground-
truth samples (553 and 793 points, respectively) were obtained through visual
interpretation of temporally consistent high-resolution Google Earth imagery aligned
with Landsat-9 acquisition, ensuring data validity. Eight environmental predictors
were derived at a consistent spatial resolution and screened for multicollinearity (VIF
< 3). Model performance was assessed using spatially explicit validation based on
accuracy, AUC, precision, recall, sensitivity, specificity, and F-measure. Results
show that RF achieved the best overall performance (accuracy = 0.727; AUC =
0.772), comparable to recent erosion modeling studies in similar tropical
environments. Topographic Wetness Index (TWI) and Normalized Difference
Moisture Index (NDMI) were identified as the most influential predictors. While
high recall and sensitivity indicate strong capability to detect erosion-prone areas,
relatively low specificity—particularly in GLM and DT—suggests a tendency to
overestimate erosion risk, with implications for management prioritization.
Ensemble-based models produced more stable and realistic spatial risk patterns. This
study provides a transferable machine learning framework for erosion risk mapping
to support sustainable watershed management in data-limited tropical regions.

Keywords : Erosion risk, machine learning, remote sensing, topographic indices,
Tamalate watershed
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Introduction

Soil erosion remains one of the most pressing and widespread forms of land
degradation, particularly in tropical watersheds that experience intense rainfall,
steep terrain, and anthropogenic pressure (Panagos et al., 2015; Poesen, 2017). In
many developing regions, including Indonesia, watershed ecosystems are
increasingly threatened by unsustainable land-use practices such as deforestation,
shifting cultivation, and poorly managed agriculture (Eekhout & de Vente, 2022).
The Tamalate Watershed in Gorontalo Province exemplifies this vulnerability,
where topographic variability, unregulated slope farming, and vegetation clearance
have significantly accelerated erosion processes. These conditions not only lead to
the loss of fertile topsoil (Woldemariam et al., 2018) but also contribute to
sedimentation in downstream water bodies, reducing the effectiveness of irrigation
infrastructure and increasing the risk of flash floods (Gaubi et al., 2017). Despite
the severity of erosion-related impacts, erosion risk assessment in many Indonesian
watersheds remains limited to generalized approaches, with insufficient attention to
spatial prediction reliability and local process representation (Susanti et al., 2019).

Conventional erosion modeling approaches—such as the Universal Soil Loss
Equation (USLE) or Revised USLE (RUSLE)—have been widely applied due to
their simplicity and accessibility (El Jazouli et al., 2017; Issaka & Ashraf, 2017).
However, these models rely on linear assumptions and often fail to capture the
spatial heterogeneity and complex interactions among environmental factors
(Borrelli et al., 2020). Furthermore, they are generally site-specific and not readily
transferable to regions with different climatic or geomorphological conditions. In
the Indonesian and broader tropical context, most erosion studies continue to rely
on empirical or single-model approaches, while systematic comparisons of multiple
machine learning algorithms using spatially validated datasets remain scarce
(Dharmawan et al., 2023). As the availability of high-resolution remote sensing data
and computing power grows, machine learning (ML) methods have emerged as a
transformative tool for environmental modelling (Zhong et al., 2021). ML
algorithms can identify intricate, non-linear patterns within large datasets and have
demonstrated high performance in spatial prediction tasks, including erosion risk
assessment (Arif et al., 2017). Nevertheless, the applicability and relative
performance of different machine learning models in heterogeneous tropical
watersheds have not been sufficiently explored, particularly at the watershed scale
(Olii et al., 2025).

In this study, a data-driven modeling approach is employed to map erosion risks in
the Tamalate Watershed by integrating five machine learning algorithms: Random
Forest (RF), Gradient Boosted Trees (GBT), Decision Tree (DT), Generalized
Linear Model (GLM), and Support Vector Machine (SVM). These models are
trained using a combination of terrain attributes, topographic and satellite-derived
indices derived from satellite imagery and GIS-based spatial analysis. The
performance of each algorithm is compared using rigorous classification metrics to
identify the most suitable method for erosion prediction in this context. The novelty
of this research lies in the systematic comparison of multiple machine learning
models for erosion risk mapping in a tropical watershed that has not been
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extensively studied, coupled with the use of diverse topographic and satellite-
derived indices predictors integrated from GIS and remote sensing. By providing
spatially explicit erosion risk maps and model-based performance insights, this
study offers practical support for watershed management, conservation
prioritization, and land-use planning in data-limited tropical regions. Moreover, this
study contributes a transferable framework for erosion risk modeling that can
inform spatial planning and conservation efforts in similar vulnerable watersheds
across Indonesia.

Methodology

Data

The Digital Elevation Model (DEM) utilized in this research was obtained from the
Earth Explorer platform (https://earthexplorer.usgs.gov/) , based on the Landsat 9
dataset (LCO8 L1TP_ 113060 20241230 20250104 02 T1), captured on
December 30, 2024. This dataset was chosen due to its suitable spatial resolution
and coverage of the study area. All spatial datasets used in this study were processed
and standardized to a raster spatial resolution of 30 %< 30 m? to ensure consistency
across analyses. Administrative boundaries were retrieved from the GADM
database (https://gadm.org/), known for its comprehensive and regularly updated
geopolitical data. To delineate erosion and non-erosion areas, high-resolution
imagery from Google Earth was interpreted visually, with image capture dates
intentionally aligned with the Landsat 9 acquisition date. This temporal alignment
between satellite imagery and ground-truth observations ensures that the input data
reflects consistent environmental conditions. As a result, the erosion hazard models
developed in this study benefit from improved temporal accuracy, thereby
increasing the robustness and validity of the spatial analysis and prediction outputs.

Method

This study was designed to develop an advanced erosion risk model for the
Tamalate Watershed (Figure 1) by integrating topographic indices and satellite-
derived indices into a machine learning framework. The overall methodology
comprised four major phases: (1) selection and analysis of erosion risk factors,
(2) erosion sample selection and dataset preparation, (3) model evaluation
using multiple performance metrics (4) erosion risk modeling with machine
learning and mapping. Each step was carefully structured to ensure the
methodological rigor necessary for spatial predictive modeling in a highly dynamic
watershed environment.

1. Selection and Analysis of Erosion Risk Factors

This study began by selecting key factors associated with erosion, incorporating
both topographic and remote sensing indices, which represent the dominant
physical and surface processes controlling soil detachment and transport in tropical
watersheds. Specifically, four topographic factors—Sediment Transport Index
(STI), Topographic Wetness Index (TWI), Terrain Ruggedness Index (TRI), and
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Stream Power Index (SPI)—were extracted from a high-resolution Digital
Elevation Model (DEM), as these indices describe runoff concentration, flow
energy, terrain instability, and erosion potential driven by topographic controls.
Concurrently, remote sensing-derived indices, including the Normalized Difference
Tillage Index (NDTI), Normalized Difference Moisture Index (NDMI), Soil
Adjusted Vegetation Index (SAVI), and Vegetation Condition Index (VCI), were
generated from Landsat-9 imagery to characterize land surface disturbance, soil
moisture conditions, vegetation cover, and vegetation health, which have been
widely validated as key indicators influencing erosion processes in humid tropical
environments.. All indices were processed and standardized using ArcGIS 10.8
(Figures 2 and 3) to ensure spatial alignment and resolution uniformity across the
dataset (Table 1).
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Figure 1. Study site
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Table 1. Class n score of topographic and remote sensing indices

Indices Erosion Risk Factor Class Score
Topographic Sediment Transport Index (STI) <5 1
5-10 2
10 -20 3
20 -40 4
>4( 5
Topographic Wetness Index (TWI) <4 1
4-8 2
8-12 3
12-16 4
>16 5
Terrain Ruggedness Index (TRI) <0.1 1
0.1-0.2 2
02-03 3
03-04 4
>0.4 5
Stream Power Index (SPI) <2 1
2-4 2
4-6 3
6-8 4
>8 5
Remote Normalized Difference Tillage Index <04 1
Sensing (NDTI) -0.4--0.2 2
-0.2-0.0 3
0.0-0.2 4
>0.2 5
Normalized Difference Moisture Index >0.3 1
(NDMI) 0.1-0.3 2
-0.1-0.1 3
-0.3--0.1 4
<-0.3 5
Soil Adjusted Vegetation Index >0.8 1
(SAVI) 0.6-0.8 2
04-0.6 3
02-0.4 4
<0.2 5
Vegetation Condition Index (VCI) >80 1
60 — 80 2
40 - 60 3
20-40 4
<20 5

2. Erosion Sample Selection and Dataset Preparation

553 erosion and 793 non-erosion points were identified via high-resolution visual
interpretation in Google Earth based on surface features (Figure 1) and used as
ground-truth data for model training and validation. To minimize potential
interpretation bias, samples were selected using consistent visual criteria and
distributed across different topographic and land-cover conditions. Temporal
consistency between Google Earth imagery and Landsat-9 acquisition was ensured
to reduce misclassification. Eight environmental indices (STI, TWI, TRI, SPI,
NDTI, NDMI, SAVI, BSI) were extracted for each point using ArcGIS 10.8 to form
the predictor dataset, and multicollinearity was assessed using VIF and TOL
metrics (Band et al., 2020; Ghorbanzadeh et al., 2020).
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3. Model Evaluation Using Multiple Performance Metrics

Model evaluation using multiple performance metrics involves assessing the
model's effectiveness through various measures, such as accuracy, classification
error, AUC, precision, recall, F-measure, sensitivity, and specificity. These metrics
provide a comprehensive understanding of how well the model predicts erosion
risks, taking into account both the true positive and false positive rates. This
evaluation process ensures that the model performs optimally and generalizes well
to unseen data, providing reliable results for erosion risk assessment.
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Figure 2. Topographic indices
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Figure 3. Remote sensing indices

4. Erosion Risk Modeling with Machine Learning and Mapping

Erosion risk was modeled using five machine learning algorithms: RF, GBT, DT,
GLM, and SVM. Each model was trained to predict erosion risk based on the
prepared dataset. To evaluate the contribution and reliability of each model, its
predictive performance was assessed, and model-specific weights were derived.
These weights were later used to integrate the outputs, enhancing the overall
accuracy of erosion risk mapping, as expressed in the following equation:

Erosion Risk = i(W, xS,) (1)

i=i

where Wi is the relative weight (importance) of factor i, and S; is the classified score
based on Table 1.
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: : X -X_
Erosion Risk, = ———™— (2)
Xmax o Xmin

where X is the original value of erosion risk, Xmin is the minimum value of erosion
risk, and Xuax is the maximum value of erosion risk. The normalized erosion risk
values (ranging from 0 to 1) were classified into five categories—Very Low, Low,
Moderate, High, and Very High—using equal interval classification, with each
class spanning a range of 0.2.

Result and Discussion

The results of this study provide a comprehensive evaluation of erosion risk
modeling using multiple machine learning algorithms, supported by robust
statistical assessments and spatial analysis. Table 2 shows all factors in the analysis
have VIF values below 3, indicating that there is no harmful multicollinearity that
could negatively impact the regression model. While a few variables—specifically
VCI, TWI, and SAVI—demonstrate moderate correlation with other predictors,
their VIF values remain within acceptable limits and do not pose a serious concern.
Therefore, it is appropriate to retain all variables for subsequent regression analysis
without the need for exclusion or adjustment.

Table 2. Multicollinearity Assessment of Erosion Risk Factors

Erosion risk R? TOL VIF Interpretation
Factors

VCI 0.57 0.43 2.30 Moderate multicollinearity, still acceptable
SAVI 0.51 049 2.03 Moderate multicollinearity, still acceptable
NDMI 0.16 0.84 1.19 No multicollinearity

NDTI 0.18 0.82 1.22 No multicollinearity

TWI 0.56 044 225 Moderate multicollinearity, still acceptable
SPI 0.41 0.59 1.70 No serious multicollinearity

TRI 0.13 0.87 1.15 No multicollinearity

STI 0.31 0.69 1.46 No multicollinearity

Table 3 illustrates the relative importance of various environmental factors in
predicting erosion risk using five machine learning models (RF, GBT, DT, GLM,
SVM). Among the variables, TWI consistently holds the highest weight—
especially in the RF (0.326) and SVM (0.238) models—indicating its critical role
in identifying areas prone to moisture accumulation and surface runoff, which are
key drivers of erosion. NDMI and STI also show substantial importance across
models, reflecting the influence of soil moisture and runoff on erosion processes.
In contrast, indices such as VCI and NDTI have relatively lower weights,
suggesting a more indirect or minor role in erosion prediction. Moderate
contributions are observed for terrain-related indices, such as TRI and SPI, which
influence how water moves across landscapes. Overall, the results suggest that
topography and hydrological indicators are the most influential factors in erosion
modeling, whereas vegetation and land management indices contribute less
significantly.
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Table 3. Weight of each machine learning model

Erosion risk Machine Learning

Factors RF GBT DT GLM SVM
VCI 0.037 0.047 0.031 0.045 0.087
SAVI 0.045 0.049 0.034 0.120 0.086
NDMI 0.095 0.103 0.118 0.253 0.169
NDTI 0.016 0.015 0.039 0.101 0.098
TWI 0.326 0.249 0.050 0.098 0.238
SPI 0.038 0.060 0.023 0.072 0.149
TRI 0.054 0.118 0.092 0.194 0.128
STI 0.086 0.119 0.106 0.187 0.128

The performance metrics of the five machine learning models (RF, GBT, DT, GLM,
and SVM) in Table 4 align with the variable importance trends observed earlier,
confirming the predictive power of topographic and moisture-related indices in
erosion risk modeling. Random Forest (RF) demonstrates the highest overall
performance with the highest accuracy (0.727), AUC (0.772), and F-measure
(0.798), likely due to its strong handling of complex interactions among dominant
predictors like TWI and NDMI. RF, DT, and GLM share the highest recall and
sensitivity (0.916), indicating their strong ability to correctly identify erosion-prone
areas, which is crucial in risk prevention. However, specificity remains relatively
low across all models, particularly in the GLM (0.411), suggesting challenges in
correctly identifying non-erosion areas, which may be due to class imbalance or
overlapping feature distributions. SVM shows the highest precision (0.734) and
specificity (0.558), suggesting it is more conservative in its predictions, leading to
fewer false positives. Overall, RF offers the most balanced performance, effectively
leveraging the most influential factors such as TWI and STI, thereby reinforcing
the previous conclusion that terrain and hydrological indicators are critical for
accurate erosion risk prediction.

Table 4. Performance metrics of each machine learning model

Performance Metrics Machine Learning

RF GBT DT GLM SVM
Accuracy 0.727 0.716 0.716 0.708 0.721
Classification Error 0.273 0.284 0.284 0.292 0.279
AUC 0.772 0.765 0.736 0.763 0.742
Precision 0.707 0.713 0.697 0.691 0.734
Recall 0.916 0.872 0.916 0.916 0.836
F-measure 0.798 0.784 0.792 0.787 0.780
Sensitivity 0.916 0.872 0.916 0.916 0.836
Specificity 0.456 0.495 0.431 0.411 0.558

The erosion risk classification Table 5 and Figure 4 reveal notable differences in
how each machine learning model categorizes the study area across five risk levels,
which directly reflects their internal mechanisms and the relative weight they assign
to various environmental factors. The variable importance analysis further indicates
that topographic controls, such as TWI and SPI, together with vegetation-related
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indicators such as NDMI, play a dominant role in shaping erosion susceptibility
within the watershed. These variables are closely associated with known erosion
processes, where moisture accumulation, flow concentration, and reduced
vegetation cover on steep slopes intensify soil detachment and sediment transport,
leading to spatial clustering of high-risk zones. RF, which places strong importance
on TWI and NDMI, classifies the majority of the area as low (50.0%) and very low
(22.0%) risk. This conservative risk estimation is consistent with RF's ensemble
nature, which reduces overfitting and captures complex, non-linear interactions
among dominant variables, particularly in landscapes characterized by
heterogeneous terrain and variable vegetation conditions. In contrast, the Decision
Tree (DT) model, which has a simpler structure and tends to overfit, assigns a much
larger area to high (34.9%) and very high (4.5%) risk. This likely results from DT’s
sensitivity to strong local patterns in a few highly weighted variables, such as NDMI
and TRI, without sufficient generalization, causing steep and sparsely vegetated
areas to be disproportionately classified as high-risk. GBT and SVM, which strike
a balance between model complexity and generalization, classify the majority of
the area as moderate risk (53.3% and 54.8%, respectively), indicating a cautious but
balanced risk assessment. GLM, which is linear and less capable of capturing
complex variable interactions, also shows a higher percentage in moderate (42.1%)
and high (25.2%) categories, possibly due to its limitations in modeling the non-
linear behavior of erosion processes. These variations highlight how model
architecture, learning strategies, and sensitivity to feature importance significantly
impact erosion risk predictions, particularly when dominant factors such as terrain
and moisture dynamics are involved.
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Table 5. Distribution of classes of erosion risk for each machine learning

Classes of RF GBT DT GLM SVM
Erosion Risk Km? % Km? % Km? % Km? % Km? %
Very Low 22.8 22.0 6.2 5.9 43 4.1 5.3 5.1 7.3 7.0
Low 51.8 50.0 33.5 32.3  30.1 290 275 26.5 35.1 339
Moderate 25.4 245 552 533 284 274 43,6 421 568 54.8
High 3.5 33 8.6 8.3 36.2 349 26.1 25.2 4.4 4.2
Very High 0.2 0.2 0.2 0.2 4.7 4.5 1.2 1.2 0.1 0.1
Total 103.7 100.0 103.7 100.0 103.7 100.0 103.7 100.0 103.7 100.0
Discussion

The results of this study present several critical findings that merit in-depth
discussion in the context of erosion risk modeling. The initial multicollinearity
assessment confirms the statistical validity of the selected predictors, with all
variables demonstrating VIF values below the commonly accepted threshold of 3
(O’brien, 2007). This ensures that the regression-based interpretations and machine
learning models are not undermined by redundant information, thereby supporting
the robustness of the variable selection process. However, the comparative analysis
of variable importance across different algorithms reveals significant differences in
model sensitivity to environmental parameters. Notably, RF and SVM consistently
assign greater weight to topographic and hydrological indices—particularly TWI
and NDMI—which is consistent with their superior predictive accuracy and
balanced classification performance (Cutler et al., 2007; Fernandez et al., 2023).
The superior performance of ensemble-based models such as RF and GBT can be
attributed to their ability to aggregate multiple decision rules and reduce variance,
enabling them to better capture terrain variability and spectral heterogeneity
characteristic of the Tamalate Watershed, where steep slopes, variable moisture
conditions, and heterogeneous vegetation cover coexist. In contrast, DT model
tends to overfit by emphasizing fewer dominant variables, leading to an
overestimation of high and very high-risk zones (Kotsiantis, 2013). This
overestimation is spatially evident in areas characterized by steep slopes and sparse
vegetation cover, where localized patterns dominate decision rules and reduce the
model’s capacity to generalize across diverse landscape conditions. This limitation
underscores the model's reduced generalizability in heterogeneous landscapes.
Furthermore, although several models show high sensitivity and recall—crucial for
identifying erosion-prone areas—they generally exhibit low specificity, particularly
GLM and DT, indicating challenges in accurately detecting areas of minimal risk
(Chawla et al., 2002). Such discrepancies may stem from imbalanced class
distributions or overlapping feature spaces. The spatial distribution of high-risk
zones further reflects the combined influence of topography and vegetation
dynamics, where areas with high flow accumulation, elevated stream power, and
reduced vegetation density consistently correspond to higher predicted erosion risk.
Lastly, the spatial patterns derived from the classification outputs demonstrate that
model architecture and complexity play a decisive role in the risk stratification of
the landscape. Ensemble methods such as RF and GBT offer more nuanced and
stable classifications, suggesting their suitability for applications requiring spatially
explicit erosion risk assessments (Breiman, 2001; Friedman, 2001). Although a
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formal uncertainty analysis was not conducted, potential sources of uncertainty
related to input data quality, visual sample interpretation, and model structure have
been acknowledged, and future work may incorporate uncertainty quantification
approaches such as ensemble agreement analysis or probabilistic modeling to
further strengthen predictive confidence. Overall, these findings emphasize the
importance of selecting algorithms that not only perform well statistically but also
reflect realistic spatial processes, and they advocate for the integration of diverse
environmental indicators to enhance the reliability of erosion modeling.

Conclusions

This study demonstrates the effectiveness of machine learning algorithms in
modeling erosion risk by integrating topographic, hydrological, and vegetation-
related indicators. The absence of harmful multicollinearity among the predictors
ensures the robustness of the input variables and supports their combined use in
predictive modeling. Among the models tested, RF consistently outperforms others
in terms of accuracy, AUC, and F-measure, largely due to its ability to capture
complex, nonlinear interactions, especially among key factors such as TWI and
NDML. In contrast, simpler models like DT exhibit tendencies toward overfitting,
leading to inflated high-risk classifications that may lack generalizability. The
spatial distribution of erosion risk classes further confirms that model architecture
significantly influences classification outcomes, with ensemble approaches like RF
and GBT offering more balanced and realistic risk estimates. While high recall and
sensitivity across models indicate their strong capacity to detect erosion-prone
areas, the generally low specificity—particularly in GLM and DT—highlights
ongoing challenges in distinguishing non-risk zones and increases the likelihood of
false-positive predictions, partly due to class imbalance in the training data. It
should be noted that the conclusions drawn from this study are based on a
single watershed and may not be directly transferable to regions with different
geomorphological, climatic, or land-use characteristics. These findings
underscore the importance of selecting appropriate machine learning models and
considering multiple environmental variables for more accurate and actionable
erosion risk assessments. Future research should explore the integration of
additional physical and socio-environmental factors and address class imbalance to
further enhance model specificity and generalizability.

Suggestion

Future research should incorporate additional variables such as detailed land use,
long-term rainfall data, and socio-economic factors. Exploring ensemble learning
techniques and improving field validation are recommended, particularly through
targeted field surveys and longitudinal monitoring to capture temporal erosion
dynamics better and reduce classification uncertainty. Integrating models into
decision-support GIS platforms can enhance their applicability for sustainable
watershed and erosion risk management, allowing local agencies to support erosion
control planning, prioritize conservation measures, and allocate resources more
effectively at the regional scale.
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