Eksperimen Laboratorium Mekanisme Gerakan Material Vulkanik pada Berbagai Kemiringan Lereng, Intensitas Hujan, dan Ketebalan Abu Vulkanik
Main Article Content
Abstract
Perubahan iklim berdampak pada peningkatan intensitas dan frekuensi cuaca ekstrim dan menyebabkan potensi kejadian banjir lahar pasca erupsi semakin tinggi. Fokus penelitian terkait banjir lahar umumnya lebih mengamati fenomena banjir yang terjadi di alur sungai, sementara penelitian terkait mekanisme gerakan material vulkanik di lereng masih sangat terbatas. Pengamatan proses pembentukan aliran lahar di lereng puncak menjadi tantangan karena kondisi medan yang sulit dan berbahaya. Oleh karena itu, dalam penelitian ini observasi dan pengukuran mekanisme gerakan material vulkanik lereng dilakukan dengan eksperimental model fisik skala laboratorium. Eksperimen berupa demonstrasi plot (demplot) lereng yang tertutup material vulkanik (abu vulkanik gradasi <2 mm) dilakukan dalam 36 set percobaan dengan beberapa variasi kemiringan lereng (80, 150, 200, 250), intensitas hujan (45-120 mm/jam) dan ketebalan abu vulkanik (0 cm, 1 cm, 2,5 cm, 5 cm), dimana durasi percobaan maksimal 2 jam. Hasil penelitian ini menunjukkan bahwa mekanisme pergerakan material vulkanik di lereng terjadi dalam 2 mekanisme, yaitu longsor dan erosi. Mekanisme longsor terjadi secara rotasional pada intensitas hujan antara 55-80 mm/jam, dimana pergerakan material dipicu oleh terganggunya stabilitas lereng akibat erosi di kaki lereng dan/atau meningkatnya tegangan air pori dan bobot lapisan tanah akibat infiltrasi. Mekanisme erosi diawali dengan terbentuknya galur-galur akibat adanya aliran permukaan setelah lapisan abu vulkanik di permukaan lereng jenuh, dimana intensitas hujan pemicu umumnya >80 mm/jam. Longsor tidak terjadi pada kemiringan lereng 80, sedangkan erosi dapat terjadi pada semua variasi kemiringan lereng. Lapisan abu vulkanik terbukti menghambat infiltrasi sehingga meningkatkan potensi terjadinya aliran permukaan dan erosi.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Al-Durrah M.M. & Bradford J.M. 1982. The Mechanism of Raindrop Splash on Soil Surfaces. Soil Science Society of America Journal 46 (5): 1086–1090. https://doi.org/10.2136/sssaj1982.03615995004600050040x
Alexander J., Barclay J., Sušnik J., Loughlin S.C., Herd R.A., Darnell A. & Crosweller S. 2010. Sediment-charged flash floods on Montserrat: The influence of synchronous tephra fall and varying extent of vegetation damage. Journal of Volcanology and Geothermal Research 194 (4): 127–138. https://doi.org/10.1016/j.jvolgeores.2010.05.002
Anon. 2019. Standard Test Method for Determination of Rolled Erosion Control Product (RECP) Performance in Protecting Hillslopes from Rainfall-Induced Erosion. In: 10. Standard for Test Method: American Society for Testing and Materials.
de Bélizal E., Lavigne F., Hadmoko D.S., Degeai J.-P., Dipayana G.A., Mutaqin B.W., Marfai M.A., Coquet M., Mauff B.L., Robin A.-K., Vidal C., Cholik N. & Aisyah N. 2013. Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: A major risk. Journal of Volcanology and Geothermal Research 261: 330–347. https://doi.org/10.1016/j.jvolgeores.2013.01.010
Collins B.D. & Dunne T. 1986. Erosion of tephra from the 1980 eruption of Mount St. Helens. Geological Society of America Bulletin 5 (97): 896–905.
van Dijk A.I.J.M., Meesters A.G.C.A. & Bruijnzeel L.A. 2002. Exponential Distribution Theory and the Interpretation of Splash Detachment and Transport Experiments. Soil Science Society of America Journal 66 (5): 1466–1474. https://doi.org/10.2136/sssaj2002.1466
Duhita A.D.P., Rahardjo A.P. & Hairani A. 2021. Effect of Slope on Infiltration Capacity and Erosion of Mount Merapi Slope Materials. Journal of the Civil Engineering Forum 7 (1): 71–84. https://doi.org/10.22146/jcef.58350
Gran K.B., Montgomery D.R. & Halbur J.C. 2011. Long-term elevated post-eruption sedimentation at Mount Pinatubo, Philippines. Geology 39 (4): 367–370. https://doi.org/10.1130/G31682.1
Hairani A. & Rahardjo A.P. 2021. A Theoretical Model for Debris Flow Initiation by Considering Effect of Hydrodynamic Force: 4th International Conference on Sustainable Innovation 2020–Technology, Engineering and Agriculture (ICoSITEA 2020) Yogyakarta, Indonesia.
Horne M. 2017. Design and Construction of a Rainfall Simulator for Large-Scale Testing of Erosion Control Practices and Products. Auburn University.
Hudson N. 1963. Raindrop size distribution in high intensity storms. Rhodesian Journal of. Agricultural Research 1 (1): 6–11.
Hulme M. & Sheard N. 1999. Climate change scenarios for Indonesia. In: 1–13. Climatic Research Unit, WWF, Norwich, UK.
Jones R., Thomas R.E., Peakall J. & Manville V. 2017. Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall. Geomorphology 282: 39–51. https://doi.org/10.1016/j.geomorph.2016.12.023
Kara T., Ekmekci E. & Apan M. 2008. Determining the Uniformity Coefficient and Water Distribution Characteristics of Some Sprinklers. Pakistan Journal of Biological Sciences 11 (2): 214–219. https://doi.org/10.3923/pjbs.2008.214.219
Kelkar V.N. 2021. Size distribution of Raindrops -Part I. MAUSAM 10 (2): 125–136. https://doi.org/10.54302/mausam.v10i2.4040
Kusumosubroto H. 2013. Aliran Debris dan Lahar. First Edition. Graha Ilmu, Yogyakarta.
Lasco R.D. & Boer R. 2006. An integrated assessment of climate change impacts, adaptation and vulnerability in watershed areas and communities in Southeast Asia. In: 124–125. The International START Secretariat, Washington, D.C., USA.
Laws J.O. & Parsons D.A. 1943. The relation of raindrop-size to intensity. Transactions, American Geophysical Union 24 (2): 452. https://doi.org/10.1029/TR024i002p00452
Major J.J., Janda R.J. & Daag A.S. 1996. Watershed disturbance and lahars on the east side of Mount Pinatubo during the mid-June 1991 eruptions. In: C. G. Newhall & R.S. Punongbayan (eds) Fire and Mud: Eruptions and Lahars of Mount Pinatubo: 895–919. University of Washington Press.
Major J.J. & Mark L.E. 2006. Peak flow responses to landscape disturbances caused by the cataclysmic 1980 eruption of Mount St. Helens, Washington. Geological Society of America Bulletin 118 (7–8): 938–958. https://doi.org/10.1130/B25914.1
Manton M.J., Della-Marta P.M., Haylock M.R., Hennessy K.J., Nicholls N., Chambers L.E., Collins D.A., Daw G., Finet A., Gunawan D., Inape K., Isobe H., Kestin T.S., Lefale P., Leyu C.H., Lwin T., Maitrepierre L., Ouprasitwong N., Page C.M., Pahalad J., Plummer N., Salinger M.J., Suppiah R., Tran V.L., Trewin B., Tibig I. & Yee D. 2001. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961-1998. International Journal of Climatology 21 (3): 269–284. https://doi.org/10.1002/joc.610
Maroufpoor E., Faryabi A., Ghamarnia H. & Moshrefi G.Y. 2010. Evaluation of uniformity coefficients for sprinkler irrigation systems under different field conditions in Kurdistan Province (Northwest of Iran). Soil and Water Research 5 (No. 4): 139–145. https://doi.org/10.17221/42/2009-SWR
Miyata S., Ahemad H., Fujita M., Tsujimoto H. & Teratani T. 2016. Temporal change of infiltration characteristics of volcanic ash layer and its effect on rainfallrunoff processess. In: Integrated Study on Mitigation of Multimodal Disasters Caused by Ejection of Volcanic Product. SATREPS Workshop Kyoto, Japan.
Murata H. & Okabayashi T. 1983. The erosion and failure of the volcanic ash slopes of sakurajima. Technology reports of the Yamaguchi University 3 (2): 141–150.
Sousa Júnior S.F. de, Mendes T.A. & Siqueira E.Q. de 2017. Development and calibration of a rainfall simulator for hydrological studies. RBRH 22 (0). https://doi.org/10.1590/2318-0331.0217170015
Tagata S., Yamakoshi T., Doi Y., Kurihara J., Terada H. & Sakai N. 2005. Post-Eruption Characteristics of Rainfall Runoff and Sediment Discharge at the Miyakejima Volcano, Japan. In: (Proceedings of symposium Sediment Budget 1: 291–301. The 7th IAHS Scientific Assembly Foz do Iguaçu, Brazil (IAHS Publ.).
Teramoto Y., Shimokawa E. & Jitousono T. 2006. Effects of volcanic ash on the runoff process in Sakurajima Volcano. In: Proceedings of the INTERPRAEVENT International Symposium"Disaster Mitigation of Debris Flows, Slope Failures and Landslides": 303–310. the INTERPRAEVENT International Symposium.
Williams G.T., Jenkins S.F., Lee D.W.J. & Wee S.J. 2021. How rainfall influences tephra fall loading — an experimental approach. Bulletin of Volcanology 83 (6): 42. https://doi.org/10.1007/s00445-021-01465-0
Yakubu M.L., Yusop Z. & Yusof F. 2014. The Modelled Raindrop Size Distribution of Skudai, Peninsular Malaysia, Using Exponential and Lognormal Distributions. The Scientific World Journal 2014: 1–7. https://doi.org/10.1155/2014/361703