Efek Sekunder Pada Aliran Turbulen Terhadap Aliran Super Kritis Pada Saluran Terbuka Untuk Bangunan Penguras Sedimen Untuk Irigasi Secondary Effects of Turbulent Flow on Supercritical Flow in Open Canal For Sediment Trap Structure for Irrigation
Main Article Content
Abstract
Secondary influence on supercritical flow with a Froude number > 1, which flows at the bottom of the canal surface of the concrete lining, has a secondary effect, which causes contour line protrusions and velocity with a wavy pattern of the average velocity distribution across the wet perimeter. Supercritical flow can transition to sub-critical flow through a hydraulic jump phenomenon that is detrimental to flow rate. This research is recommended as an innovation for optimum discharge efficiency and flow depth parameters in an open canal in an irrigation system. This research method involves physical testing with a 1:40 scale flume on a prototype in the laboratory so that detailed profiles of instantaneous and vertical flow velocity are observed using a 16 Mhz Acoustic Doppler Velocimeter (ADV) to obtain flow characteristics. Then, the modified wake-log law on the bottom and surface of the flow is analysed in the flume within 5 hours of flow to determine the increase in the more stable sediment fraction per hour. The research results show that the ratio of width (b) and depth of flow (h) can significantly increase the strength of the secondary flow with an ideal b/h ratio that can provide discharge flow efficiency based on Froude number = 2.2 and Reynolds 2500 - 2600 can be efficient up to 46% is required Q: 1.26 l/s, flow speed 10.79 cm/s so that the flow is in a laminar to turbulent transition position and does not trigger sedimentation in the wet perimeter of the canal.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Balachandar, R., dan Bhuiyan, F. (2007): Higher-Order Moments of Velocity Fluctuations in an Open-Channel Flow with Large Bottom Roughness, Journal of Hydraulic Engineering, 133(1), 77–87. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(77)
Basse, N. T. (2023): An Algebraic Non-Equilibrium Turbulence Model of the High Reynolds Number Transition Region, Water, 15(18), 3234. https://doi.org/10.3390/w15183234
Chiodi, F., Claudin, P., dan Andreotti, B. (2014): A two-phase flow model of sediment transport: transition from bedload to suspended load, Journal of Fluid Mechanics, 755, 561–581. https://doi.org/10.1017/jfm.2014.422
Cuthbertson, A. J., dan Ervine, D. A. (2007): Experimental Study of Fine Sand Particle Settling in Turbulent Open Channel Flows over Rough Porous Beds, Journal of Hydraulic Engineering, 133(8), 905–916. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(905)
García-Ramos, F. J., Badules, J., Boné, A., Gil, E., Aguirre, A. J., dan Vidal, M. (2018): Application of an Acoustic Doppler Velocimeter to Analyse the Performance of the Hydraulic Agitation System of an Agricultural Sprayer, Sensors, 18(11), 3715. https://doi.org/10.3390/s18113715
Huang, C.-C., Lai, J.-S., Lee, F.-Z., dan Tan, Y.-C. (2018): Physical Model-Based Investigation of Reservoir Sedimentation Processes, Water, 10(4), 352. https://doi.org/10.3390/w10040352
Isnaeni, M. (2023): Experiments Of Geometric Shape Of Sediment Trap Rectangular And Vortex Settling Desilting Basin, International Journal of GEOMATE, 24(106). https://doi.org/10.21660/2023.106.s8650
Isnaeni, M., Buhyatil Kubra, H., Sukadi, Sopandi, Triyadi, dan Chairunnisa (2022): Perilaku Pengendapan Sedimen Sphere Particles yang Mengandung Fiber dalam Aliran Sungai Ciasem yang Terkontaminasi Limbah Industri, Jurnal Teknik Sumber Daya Air, 105–116. https://doi.org/10.56860/jtsda.v2i2.47
Kumar, N., dan Malipatil, A. S. (2014): CFD Analysis of Vortex Tube for Various Cross Sectional Nozzles, 2.
Lepesqueur, J., Hostache, R., Martínez-Carreras, N., Montargès-Pelletier, E., dan Hissler, C. (2019): Sediment transport modelling in riverine environments: on the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary, Hydrology and Earth System Sciences, 23(9), 3901–3915. https://doi.org/10.5194/hess-23-3901-2019
Manes, C., Pokrajac, D., dan McEwan, I. (2007): Double-Averaged Open-Channel Flows with Small Relative Submergence, Journal of Hydraulic Engineering, 133(8), 896–904. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(896)
Otsuka, J., Saruwatari, A., dan Watanabe, Y. (2017): Vortex-induced suspension of sediment in the surf zone, Advances in Water Resources, 110, 59–76. https://doi.org/10.1016/j.advwatres.2017.08.021
Ramirez, R., Avila, E., Lopez, L., Bula, A., dan Duarte Forero, J. (2020): CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps, Alexandria Engineering Journal, 59(1), 291–309. https://doi.org/10.1016/j.aej.2019.12.041
Sudarningsih, S., Maulana, L., Bijaksana, S., Hafidz, A., Pratama, A., Widodo, W., dan Iskandar, I. (2017): Magnetic Characterization of Sand and Boulder Samples from Citarum River and Their Origin, Journal of Mathematical and Fundamental Sciences, 49(2), 116. https://doi.org/10.5614/j.math.fund.sci.2017.49.2.2