Pengembangan Model Prediksi Banjir Berdasarkan Akurasi Inflow Dan Outflow Pada Bendungan Bili-Bili Development of a Flood Prediction Model Based on The Accuracy of Inflow and Outflow at Bili-Bili Dam
Main Article Content
Abstract
The inflow prediction model for Bili-Bili Dam, developed by the Dam Monitoring Center (PMB), has met the validation interpretation criteria, but the data validation values can still be improved. Therefore, this study develops a simulation prediction model using HEC-HMS with the Transform Method Clark to predict the 5-day inflow by inputting predicted rainfall data from BMKG and observed inflow data.
To validate the results of the simulation model, data validation analysis is conducted by comparison using the Root Mean Squared Error (RMSE), Relative Error (RE), Nash Sutcliffe Efficiency (NSE), and Correlation Coefficient (R) methods using calibrated and uncalibrated data. The calibration method used in this study is a linear equation with a 7-day data range starting from February 6 to June 23, 2024.
The best validation results of the simulated rainfall data from BMKG against the calibrated observed inflow are found in the 1-day ahead prediction period, with an average NSE = 0.761; average R = 0.246; average RE = 7.2%; average RMSE = 26.814, due to the NSE value close to one and the low RMSE and relative error values. Overall, it can be concluded that the comparison of simulated rainfall data from BMKG against observed inflow with a prediction accuracy of 1 day ahead can be used for inflow prediction at Bili-Bili Dam.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Apridayanti, E., 2008. Evaluasi Pengelolaan Lingkungan Perairan Waduk Lahor Kabupaten Malang Jawa Timur. Masters thesis, program Pascasarjana Universitas Diponegoro. http://eprints.undip.ac.id/17305/
Clay, A., 2007. Hidrologi dan Pengelolaan Daerah Aliran Sungai. Yogyakarta.: Gadjah Mada University Press.
Elmasari, Y. & Nurhadi, 2019. Optimasi Artifical Neural Network Dengan Genetic Algorithm Pada Prediksi Debit Inflow Waduk Sengguruh. Jurnal Ilmiah Penelitian dan Pembelajaran Informatika, 4(2). https://www.jurnal.stkippgritulungagung.ac.id/index.php/jipi/article/view/1442
Indarto, 2012. Hidrologi Dasar Teori dan Contoh Aplikasi Model Hidrologi. Jakarta: Bumi Aksara.
Jarwanti, D. P., Suhartanto, E. & Fidari, J. S., 2021. Validasi Data Curah Hujan Satelit TRMM (Tropical Rainfall Measuring Mission) dengan Data Pos Penakar Hujan di DAS Grindulu, Kabupaten Pacitan, Jawa Timur. Jurnal Teknologi dan Rekayasa Sumber Daya Air (JTRESDA) , 1 (2). https://doi.org/10.21776/ub.jtresda.2021.001.02.36
Kull, D. W. & Feldman, A. D., 1998. Evolution of Clark's Unit Graph Method to Spatially Distributed Runoff. Journal of Hydrologic Engineering , 3(1). https://ascelibrary.org/doi/abs/10.1061/(ASCE)1084-0699(1998)3:1(9)
Rahma, N. F., 2019. Validasi Data Curah Hujan TRMM (Tropical Rainfall Measuring Mission) dengan Pos Stasiun Hujan di Sub DAS Sumber Brantas. Sarjana thesis, Universitas Brawijaya. https://repository.ub.ac.id
Soewarno, 1995. Hidrologi Aplikasi Metode Statistik Jilid 2. Bandung: Nova.
Sugiyono, 2007. Statika Untuk Penelitian. Bandung: Alfabeta.
Syaifullah, M. D., 2014. Validasi Data Trmm Terhadap Data Curah Hujan Aktual Di Tiga Das Di Indonesia, J. Meteorol. dan Geofis. Jurnal Meteorologi dan Geofisika , 15(2). https://jmg.bmkg.go.id
Wulandari, D. A., Budieny, H. & Kurniani, D., 2016. Keakuratan Prediksi Inflow Waduk Dengan Neraca Air Waduk. Jurnal Ilmiah Bidang Ilmu Kerekayasaan , 37(2). https:/ejournal.undip.ac.id/index.php/teknik
Xu, B., Zhong, P.-a., Zhao, Y.-f. & Zhu, Y.-z., 2014. Comparison between dynamic programming and genetic algorithm for hydro unit economic load dispatch. Water Science and Engineering, 7(4), pp. 420-432. https://www.sciencedirect.com/science