Penerapan Deep Learning untuk Prediksi Tinggi Muka Air Sungai dengan Mempertimbangkan Faktor Operasi Bendungan
Main Article Content
Abstract
Indonesia is a flood-prone region, making early detection through accurate river water level prediction essential by utilizing efficient modeling methods. This study aims to develop a high-accuracy water level (TMA) prediction model at several river flow monitoring stations by employing spatial rainfall map datasets and dam discharge information as input variables in a deep learning framework that combines CNN and LSTM architectures. The model was tested under two scenarios, with and without dam operation, and its predictive performance was evaluated at three monitoring sites (Katulampa, Kampung Kalapa, and MT. Haryono). The initial evaluation using only spatial rainfall input for the MT. Haryono station showed a correlation coefficient of 0.65, MAE of 0.412 m, and NSE of 0.58. After incorporating multiple rainfall images and integrating discharge data based on dam operation scenarios, a significant improvement in prediction accuracy was observed across all stations, with the correlation increasing to 0.88, MAE decreasing to 0.137 m, and NSE rising to 0.85. These findings confirm that the inclusion of additional hydrological information, particularly dam operation data, can substantially enhance the reliability of river water level prediction models.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Alfieri, L., Cohen, S., Galantowicz, J., Schumann, G. J., Trigg, M. A., Zsoter, E., ... & Salamon, P., 2018. A global network for operational flood risk reduction. Environmental science & policy, 84, 149-158. https://doi.org/10.1016/j.envsci.2018.03.014
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., ... & Farhan, L., 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8
Ayus, I., Natarajan, N., & Gupta, D., 2023. Prediction of water level using machine learning and deep learning techniques. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(4), 2437-2447. https://doi.org/10.1007/s40996-023-01053-6
Badan Nasional Penanggulangan Bencana (BNPB). Data Informasi Bencana Indonesia (DIBI). https://dibi.bnpb.go.id/superset/dashboard/2/ diakses pada 23 September 2025.
Baek S-S, Pyo J, Chun JA., 2020. Prediction of Water Level and Water Quality Using a CNN-LSTM Combined Deep Learning Approach. Water, 12(12):3399. https://doi.org/10.3390/w12123399.
Balai Besar Wilayah Sungai Ciliwung Cisadane, Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2021. Laporan Manual OP Bendungan Ciawi.
Balai Besar Wilayah Sungai Ciliwung Cisadane, Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2021. Laporan Manual OP Bendungan Ciawi.
Chen, J., & Adams, B. J., 2006. Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. Journal of Hydrology, 318(1-4), 232-249.. https://doi.org/10.1016/j.jhydrol.2005.06.017
DiPietro, R., & Hager, G. D., 2020. Deep learning: RNNs and LSTM. In Handbook of medical image computing and computer assisted intervention (pp. 503-519). Academic Press. https://doi.org/10.1016/B978-0-12-816176-0.00026-0
Hieu, T. T., Chieu, T. Q., Quang, D. N., & Hieu, N. D., 2023. Water level prediction using deep learning models: A case study of the Kien Giang River, Quang Binh Province. River, 2(4), 468-479. https://doi.org/10.1002/rvr2.63
Jensen, R. R., Hardin, P. J., & Yu, G., 2009. Artificial neural networks and remote sensing. Geography Compass, 3(2), 630-646. https://doi.org/10.1111/j.1749-8198.2008.00215.x
Kim, D., Han, H., Wang, W., & Kim, H. S., 2022. Improvement of deep learning models for river water level prediction using complex network method. Water, 14(3), 466. https://doi.org/10.3390/w14030466
Li, X., Xu, W., Ren, M., Jiang, Y., & Fu, G., 2022. Hybrid CNN-LSTM models for river flow prediction. Water Supply, 22(5), 4902-4919. https://doi.org/10.2166/ws.2022.170
Perera, D., Seidou, O., Agnihotri, J., Rasmy, M., Smakhtin, V., Coulibaly, P., & Mehmood, H., 2019. Flood early warning systems: a review of benefits, challenges and prospects, UNU-INWEH, Hamilton. https://collections.unu.edu/view/UNU:8272
Pradhan, P., Tingsanchali, T., & Shrestha, S., 2020. Evaluation of soil and water assessment tool and artificial neural network models for hydrologic simulation in different climatic regions of Asia. Science of the Total Environment, 701, 134308. https://doi.org/10.1016/j.scitotenv.2019.134308
Samsudin, W., 2015. Analisis Statistik Dalam Pendugaan Curah Hujan Studi Kasus Di Das Ciliwung Hulu. Jurnal Aplikasi Statistika & Komputasi Statistik, 7(2), 39-57. https://garuda.kemdiktisaintek.go.id/documents/detail/955156
Shen, C., & Lawson, K., 2021. Applications of deep learning in hydrology. Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences, 283-297. https://doi.org/10.1002/9781119646181.ch19
Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., & Demir, I., 2020. A comprehensive review of deep learning applications in hydrology and water resources. Water Science and Technology, 82(12), 2635-2670. https://doi.org/10.2166/wst.2020.369
Zakaria, M. N. A., Ahmed, A. N., Malek, M. A., Birima, A. H., Khan, M. M. H., Sherif, M., & Elshafie, A., 2023. Exploring machine learning algorithms for accurate water level forecasting in Muda river, Malaysia. Heliyon, 9(7). https://doi.org/10.1016/j.heliyon.2023.e17689