Penilaian Debit Lingkungan Berbasis Pendekatan Hidrologi pada DAS Citarum Hulu
Main Article Content
Abstract
Di Indonesia, kawasan Sungai Citarum mengalami tantangan lingkungan yang cukup signifikan, antara lain meluapnya Sungai Citarum dan daerah aliran sungainya yang menyebabkan banjir, dan kekurangan air pada musim kemarau. Namun, tantangan utama adalah ketersediaan air di Citarum, karena debit yang mempengaruhi keseimbangan ekologi Daerah Aliran Sungai (DAS). Penelitian ini mengkaji beberapa metode penilaian debit lingkungan dengan pendekatan berbasis hidrologi diantaranya Tennant, Range of Variability Approach (RVA). Penelitian ini bertujuan untuk mengetahui besarnya aliran lingkungan (EF) yang diperlukan untuk menopang fungsi sungai dalam mendukung keseimbangan ekologi. Hasil penelitian menunjukan bahwa metode penilaian aliran lingkungan berbasis hidrologi merupakan langkah pertama yang diperlukan dalam perencanaan alokasi debit untuk perlindungan lingkungan. Ditunjukkan bahwa penggunaan fitur-fitur pelengkap dari teknik penilaian aliran lingkungan yang ada dapat digunakan untuk mencapai perkiraan aliran lingkungan yang dapat dibenarkan, bahkan dalam kondisi keterbatasan informasi terkait hubungan ekologi-hidrologi spesifik pada DAS Citarum. Penelitian ini bermaksud untuk mempromosikan perlunya perencanaan alokasi debit lingkungan dalam pengembangan DAS dan dapat dirumuskan ke dalam kebijakan nasional yang relevan. Kajian EF dilakukan dengan membandingkan 7Q10 dan Q95 dari kedua data pengamatan debit Nanjung dan pemodelan curah hujan-limpasan. Hasilnya ditemukan bahwa metode Weibull minima, hasil 7Q10 untuk pemodelan Sacramento, adalah 2,18 m3/s sedangkan AWLR Nanjung adalah 1,24 m3/s. Selain itu, nilai Q95 untuk Nanjung AWLR adalah 6,55 m3/s sedangkan hasil pemodelan curah hujan limpasan Sacramento adalah 7,06 m3/s. Besaran debit yang tersedia perlu dipastikan dapat mendukung kondisi ekologi di wilayah DAS Citarum Hulu. Hal ini relevan karena perbedaan tersebut tentunya mempengaruhi keseimbangan ekologi dan pengelolaan Sungai Citarum.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Amusja, A.Z., Ratner, N.S., Sokolov, B.L., 1991. Minimum river flow: state of art and prospects for research, Trudy GGI (Trans. State Hydrol. Inst., Leningrad, USSR) 350, 3–28.
Beven, K.J., 2001. Rainfall-Runoff Modelling: The Primer. John Wiley & Sons, Chichester, United Kingdom.
Bovee, K. D., 1982. A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology. Instream Flow Information Paper 12. U.S. Fish Wildl. Serv. FWS/OBS-82/26.
Brunner, P., R. Therrien, P. Renard, C. T. Simmons, and H.-J. H. Franssen, 2017. Advances in understanding river-groundwater interactions, Rev. Geophys., 55, 818–854. https://doi.org/10.1002/2017RG000556
Davis, R., dan Hirji, R., 2003. Environmental Flows: Concepts and Methods, Water Resources And Environment Technical Note C.1, World Bank.
Demuth, S., 1994. Regionalisation of low flows using a multiple regression approach—a review, Proceedings of the XVIIth Conference of Danube countries, Budapesht, vol. 1, pp. 115– 122.
Dyson M., Bergkamp G., Scanlon J. (eds), 2003. Flow. The essential of environmental flows. IUCN, Gland, Switzerland and Cambridge, UK.
Granemann A.R.B., Mine M.R.M., Kaviski E., 2018. Frequency analysis of minimum flows, Brazilian Journal of Water Resources, Porto Alegre, 23, e17. https://doi.org/10.1590/2318-0331.0318170080
Hatmoko W., Levina, Radhika, Amirwandi, Firmansyah R., 2020. Quantification of Environmental Flow Requirement for some Rivers in West Java, E3S Web of Conferences, 148, 07003. https://doi.org/10.1051/e3sconf/202014807003
Karimi S., Salarijazi M., Ghorbani K, et al., 2021. Comparative assessment of environmental flow using hydrological methods of low flow indexes, Smakhtin, Tennant and flow duration curve. Acta Geophys, 69, 285–293. https://doi.org/10.1007/s11600-021-00539-z
Karimi, S.S., Yasi, M., dan Eslamian, S., 2012. Use of hydrological methods for assessment of environmental flow in a river reach, Int. J. Environ. Sci. Technol., 9, 549–558. https://doi.org/10.1007/s13762-012-0062-6
Kuntoro A.A., Cahyono M., Soentoro E.A., 2018. Land Cover and Climate Change Impact on River Discharge: Case Study of Upper Citarum River Basin. J. Eng. Technol. Sci., 50(3), 364-381. https://doi.org/10.5614/j.eng.technol.sci.2018.50.3.4
McCuen, R.H., Knight, Z. dan Cutter, A.G., 2006. Evaluation of the Nash-Sutcliffe Efficiency Index, Journal of Hydrologic Engineering, 11, 597-602. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)
Naghettini, M., 2017. Fundamentals of Statistical Hydrology. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-43561-9
Nash J.E., Sutcliffe J.V., 1970. River flow forecasting through conceptual models: Part 1. A discussion of principles, J. Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
Nestler, J. M., Milhous, R. T., Payne, T. R., Smith, D.L., 2019. History and review of the habitat suitability criteria curve in applied aquatic ecology, River Res Applic, 1–26, https://doi.org/10.1002/rra.3509
Nikghalb S., Shokoohi A., Singh V.P., Yu R., 2016. Ecological Regime versus Minimum Environmental Flow: Comparison of Results for a River in a Semi Mediterranean Region. Water Resour Manage, 30(13), 4969–4984. https://doi:10.1007/s11269-016-1488-2
Nnaji G.A., Huang W., Gitau M.W., Clark C., 2014. Frequency Analysis of Minimum Ecological Flow and Gage Height in Suwannee River, Florida, Journal of Coastal Research, 68(sp1), 152-159. https://doi.org/10.2112/SI68-020.1
Pemerintah Indonesia, 1974. Undang-Undang No. 11 Tahun 1974 tentang Pengairan, Lembaran Negara RI Tahun Tahun 1974 No. 65, Sekretariat Negara, Jakarta.
Pemerintah Indonesia, 2004. Undang-Undang No. 7 Tahun 2004 tentang Sumber Daya Air, Lembaran Negara RI Tahun Tahun 2004 No. 32, Sekretariat Negara, Jakarta.
Pemerintah Indonesia, 2019. Undang-Undang No. 17 Tahun 2019 tentang Sumber Daya Air, Lembaran Negara RI Tahun Tahun 2019 No. 190, Sekretariat Negara, Jakarta.
Pemerintah Indonesia, 2020. Undang-Undang No. 11 Tahun 2020 tentang Cipta Kerja, Lembaran Negara RI Tahun Tahun 2020 No. 245, Sekretariat Negara, Jakarta.
Pemerintah Indonesia, 2011. Peraturan Pemerintah Nomor 38 Tahun 2011 tentang Sungai, Lembaran Negara RI Tahun Tahun 2011 No. 74, Sekretariat Negara, Jakarta.
Pemerintah Indonesia, 2018. Peraturan Presiden Nomor 15 Tahun 2018 tentang Percepatan Pengendalian Pencemaran dan Kerusakan Daerah Aliran Sungai Citarum, Lembaran Negara RI Tahun Tahun 2018 No. 30, Sekretariat Negara, Jakarta.
Podger, G., 2004. Rainfall Run Off Library Versi 1.05 User Guide, Department of Infrastructure, Planning and Natural Resources; CRC for Catchment Hydrology.
Ponce, V.M., Lindquist, D.S., 1990. Management of baseflow augmentation: a review. Water Resour. Bull., 26 (2), 259–268. https://doi.org/10.1111/j.1752-1688.1990.tb01369.x
Poovakka A.K., Eldho T.I., 2019. A comparative study of conceptual rainfall-runoff models GR4J, AWBM and Sacramento at catchments in the upper Godavari river basin, India. J. Earth Syst. Sci., 128:33. https://doi.org/10.1007/s12040-018-1055-8
Pyrce, R. Hydrological low flow indices and their uses. Canada, 2004. https://www.osti.gov/etdeweb/biblio/20714343 (accessed in September 20th, 2014).
Riggs, H.C., 1972. Low flow investigations. Techniques of Water Resources Investigations of the USGS, Book 4, Hydrological Analysis and Interpretation, Washington DC, 18 pp.
Riggs, H.C., 1976. Effects of man on low flows. Proceedings of the Conference on Environment, Aspects Irrigation and Drainage, University of Ottawa, American Society of Civil Engineers, New York, pp. 306–314.
Searcy, J.C., 1959. Flow duration curves. United States Geological Survey, Washington, DC, Water Supply Paper, 1542A.
Smakhtin, V.U., 2001. Low flow hydrology: A Review, Journal of Hydrology, 240, 147-186. https://doi.org/10.1016/S0022-1694(00)00340-1
Smakhtin, V.U., Shilpakar R.L. dan Hughes D.A., 2006. Hydrology based assessment of environmental flows: an example from Nepal, Hydrological Sciences Journal, 51:2, 207-222. https://doi.org/10.1623/hysj.51.2.207
Supatmanto B.D., Yusuf S.M., 2015. Hydrological study based on climate changes using SWAT model in Jatiluhur water catchment area, J. Sains & Teknologi Modifikasi Cuaca, 16(2), 55-60. https://doi.org/10.29122/jstmc.v16i2.1047
Suwelo, I. S., 2005. Spesies Ikan Langka dan Terancam Punah Perlu Dilindungi Undang-undang, Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, Jilid 12, Nomor 2: 161-168
Syiva, H., et al, 2020. Rainfall distribution in relation to flooding in upper Citarum watershed, Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 500, 012088. https://doi:10.1088/1755-1315/500/1/012088
Solander K.C., Bennett K.E., Middleton R.S., 2017. Shifts in historical streamflow extremes in the Colorado River Basin, Journal of Hydrology: Regional Studies, 12, 363-377. https://doi.org/10.1016/j.ejrh.2017.05.004
Tallaksen, L.M., 1995. A review of baseflow recession analysis, Journal Hydrology, 165, 349–370. https://doi.org/10.1016/0022-1694(94)02540-R
Tharme, R. E., 2003. A Global Perspective On Environmental Flow Assessment: Emerging Trends In The Development And Application Of Environmental Flow Methodologies For Rivers, River Research And Applications, 19: 397–441. https://doi.org/10.1002/rra.736
Toriman M.E., Jaafar M., Abdullah S.M.S., 2008. Environmental flow modelling as a tool for water resources management: a study of detailed environmental impact assessment (DEIA) in Sungai Pelus catchment, Malaysia, Journal of Social Sciences and Humanities, 3(1), 1-10.
United Nations Educational, Scientific and Cultural Organization/World Meteorological Orgaxlization, 1992. International Glossary of Hydrology. Second edition, UNESCO, Paris.
Vasak, L., 1977. Low flow studies. A literature survey. Free University, Amsterdam, Netherlands.
Verma RK, Murthy S, Verma S. et. al., 2017. Design flow duration curves for environmental flows estimation in Damodar River Basin, India, Appl Water Sci, 7, 1283–1293. https://doi.org/10.1007/s13201-016-0486-0
Vogel, R.M., dan Fennessey, N.M., 1994. Flow duration curves. I. A new interpretation and confidence intervals, J. Water Resour. Plan. Manag., 120 (4), 485–504. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(485)
Vogel, R.M., dan Fennessey, N.M., 1995. Flow duration curves. II. a review of applications in water resource planning, Water Resour. Bull., 31 (6), 1029–1039. https://doi.org/10.1111/j.1752-1688.1995.tb03419.x
Vogel, R.M., dan Kroll, C.N., 1989. Low-flow frequency analysis using probability-plot correlation coefficients, J. Water Res. Plan. Manag. (ASCE), 115 (3), 338–357. https://doi.org/10.1061/(ASCE)0733-9496(1989)115:3(338)
Wijayanti, Y., Anda, M., Safitri, L., Tarmadja, S., Juliastuti, dan Setyandito, O., 2020. Water-energy nexus development for sustainable water management in Indonesia, IOP Conf. Ser.: Earth Environ. Sci. 426, 012058. https://doi.org/10.1088/1755-1315/426/1/012058
World Meteorological Organization, 1988, 2004, 2006. Technical Regulations (WMO-No. 49), Geneva.
World Meteorological Organization, 2009. Manual on Low Flow Estimation and Prediction, (WMO-No. 1029), Geneva.
Xu W., Dong Z., Hao Z., Ren L., Wang W., Li D., 2019. Ecological flow regime and its satisfactory degree assessment based on an integrated method, Polish Journal of Environmental Studies, 28(5), 3959-3970. https://doi:10.15244/pjoes/97395
Zeiringer B., Seliger C., Greimel F., Schmutz S., 2018. River Hydrology, Flow Alteration, and Environmental Flow. In: Schmutz S., Sendzimir J. (eds) Riverine Ecosystem Management. Aquatic Ecology Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-73250-3_4